MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfdm2 Structured version   Visualization version   GIF version

Theorem mbfdm2 25649
Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
mbfmptcl.1 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
mbfmptcl.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
mbfdm2 (𝜑𝐴 ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfdm2
StepHypRef Expression
1 mbfmptcl.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 3135 . . 3 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 dmmptg 6252 . . 3 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
42, 3syl 17 . 2 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
5 mbfmptcl.1 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
6 mbfdm 25638 . . 3 ((𝑥𝐴𝐵) ∈ MblFn → dom (𝑥𝐴𝐵) ∈ dom vol)
75, 6syl 17 . 2 (𝜑 → dom (𝑥𝐴𝐵) ∈ dom vol)
84, 7eqeltrrd 2826 1 (𝜑𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3050  cmpt 5235  dom cdm 5681  volcvol 25475  MblFncmbf 25626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745  ax-cnex 11210  ax-resscn 11211  ax-1cn 11212  ax-icn 11213  ax-addcl 11214  ax-addrcl 11215  ax-mulcl 11216  ax-mulrcl 11217  ax-mulcom 11218  ax-addass 11219  ax-mulass 11220  ax-distr 11221  ax-i2m1 11222  ax-1ne0 11223  ax-1rid 11224  ax-rnegex 11225  ax-rrecex 11226  ax-cnre 11227  ax-pre-lttri 11228  ax-pre-lttrn 11229  ax-pre-ltadd 11230  ax-pre-mulgt0 11231
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-po 5593  df-so 5594  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-1st 8002  df-2nd 8003  df-er 8733  df-pm 8857  df-en 8974  df-dom 8975  df-sdom 8976  df-pnf 11296  df-mnf 11297  df-xr 11298  df-ltxr 11299  df-le 11300  df-sub 11492  df-neg 11493  df-div 11918  df-2 12322  df-ioo 13377  df-cj 15099  df-re 15100  df-mbf 25631
This theorem is referenced by:  mbfss  25658  mbfpos  25663  mbfposr  25664  mbfmulc2  25675  mbfi1flim  25736  itgge0  25823  itgss3  25827  itgless  25829  ibladdlem  25832  ibladd  25833  itgaddlem1  25835  iblabslem  25840  itgsplit  25848  bddmulibl  25851  itggt0  25856  itgcn  25857  ibladdnclem  37325  itgaddnclem1  37327  iblabsnclem  37332  itgmulc2nclem2  37336  itgmulc2nc  37337  itgabsnc  37338  iblsplit  45524
  Copyright terms: Public domain W3C validator