MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfdm2 Structured version   Visualization version   GIF version

Theorem mbfdm2 24706
Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014.)
Hypotheses
Ref Expression
mbfmptcl.1 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
mbfmptcl.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
Assertion
Ref Expression
mbfdm2 (𝜑𝐴 ∈ dom vol)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem mbfdm2
StepHypRef Expression
1 mbfmptcl.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 3107 . . 3 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 dmmptg 6134 . . 3 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
42, 3syl 17 . 2 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
5 mbfmptcl.1 . . 3 (𝜑 → (𝑥𝐴𝐵) ∈ MblFn)
6 mbfdm 24695 . . 3 ((𝑥𝐴𝐵) ∈ MblFn → dom (𝑥𝐴𝐵) ∈ dom vol)
75, 6syl 17 . 2 (𝜑 → dom (𝑥𝐴𝐵) ∈ dom vol)
84, 7eqeltrrd 2840 1 (𝜑𝐴 ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cmpt 5153  dom cdm 5580  volcvol 24532  MblFncmbf 24683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-ioo 13012  df-cj 14738  df-re 14739  df-mbf 24688
This theorem is referenced by:  mbfss  24715  mbfpos  24720  mbfposr  24721  mbfmulc2  24732  mbfi1flim  24793  itgge0  24880  itgss3  24884  itgless  24886  ibladdlem  24889  ibladd  24890  itgaddlem1  24892  iblabslem  24897  itgsplit  24905  bddmulibl  24908  itggt0  24913  itgcn  24914  ibladdnclem  35760  itgaddnclem1  35762  iblabsnclem  35767  itgmulc2nclem2  35771  itgmulc2nc  35772  itgabsnc  35773  iblsplit  43397
  Copyright terms: Public domain W3C validator