![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mbfdm2 | Structured version Visualization version GIF version |
Description: The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 31-Aug-2014.) |
Ref | Expression |
---|---|
mbfmptcl.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
mbfmptcl.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
mbfdm2 | ⊢ (𝜑 → 𝐴 ∈ dom vol) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfmptcl.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
2 | 1 | ralrimiva 3135 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
3 | dmmptg 6252 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
5 | mbfmptcl.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) | |
6 | mbfdm 25638 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ dom vol) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ dom vol) |
8 | 4, 7 | eqeltrrd 2826 | 1 ⊢ (𝜑 → 𝐴 ∈ dom vol) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ↦ cmpt 5235 dom cdm 5681 volcvol 25475 MblFncmbf 25626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-po 5593 df-so 5594 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-1st 8002 df-2nd 8003 df-er 8733 df-pm 8857 df-en 8974 df-dom 8975 df-sdom 8976 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-div 11918 df-2 12322 df-ioo 13377 df-cj 15099 df-re 15100 df-mbf 25631 |
This theorem is referenced by: mbfss 25658 mbfpos 25663 mbfposr 25664 mbfmulc2 25675 mbfi1flim 25736 itgge0 25823 itgss3 25827 itgless 25829 ibladdlem 25832 ibladd 25833 itgaddlem1 25835 iblabslem 25840 itgsplit 25848 bddmulibl 25851 itggt0 25856 itgcn 25857 ibladdnclem 37325 itgaddnclem1 37327 iblabsnclem 37332 itgmulc2nclem2 37336 itgmulc2nc 37337 itgabsnc 37338 iblsplit 45524 |
Copyright terms: Public domain | W3C validator |