MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0p1 Structured version   Visualization version   GIF version

Theorem mulgnn0p1 19004
Description: Group multiple (exponentiation) operation at a successor, extended to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0p1.b 𝐵 = (Base‘𝐺)
mulgnn0p1.t · = (.g𝐺)
mulgnn0p1.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0p1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))

Proof of Theorem mulgnn0p1
StepHypRef Expression
1 simpr 484 . . 3 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2 simpl3 1194 . . 3 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
3 mulgnn0p1.b . . . 4 𝐵 = (Base‘𝐺)
4 mulgnn0p1.t . . . 4 · = (.g𝐺)
5 mulgnn0p1.p . . . 4 + = (+g𝐺)
63, 4, 5mulgnnp1 19001 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
71, 2, 6syl2anc 584 . 2 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
8 eqid 2731 . . . . . . 7 (0g𝐺) = (0g𝐺)
93, 5, 8mndlid 18668 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
103, 8, 4mulg0 18993 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
1110adantl 481 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
1211oveq1d 7367 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = ((0g𝐺) + 𝑋))
133, 4mulg1 19000 . . . . . . 7 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
1413adantl 481 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (1 · 𝑋) = 𝑋)
159, 12, 143eqtr4rd 2777 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋))
16153adant2 1131 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋))
17 oveq1 7359 . . . . . . 7 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
18 1e0p1 12636 . . . . . . 7 1 = (0 + 1)
1917, 18eqtr4di 2784 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = 1)
2019oveq1d 7367 . . . . 5 (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = (1 · 𝑋))
21 oveq1 7359 . . . . . 6 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
2221oveq1d 7367 . . . . 5 (𝑁 = 0 → ((𝑁 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋))
2320, 22eqeq12d 2747 . . . 4 (𝑁 = 0 → (((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋) ↔ (1 · 𝑋) = ((0 · 𝑋) + 𝑋)))
2416, 23syl5ibrcom 247 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)))
2524imp 406 . 2 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 = 0) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
26 simp2 1137 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → 𝑁 ∈ ℕ0)
27 elnn0 12389 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2826, 27sylib 218 . 2 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
297, 25, 28mpjaodan 960 1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  cfv 6487  (class class class)co 7352  0cc0 11012  1c1 11013   + caddc 11015  cn 12131  0cn0 12387  Basecbs 17126  +gcplusg 17167  0gc0g 17349  Mndcmnd 18648  .gcmg 18986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-n0 12388  df-z 12475  df-uz 12739  df-seq 13915  df-0g 17351  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mulg 18987
This theorem is referenced by:  mulgaddcom  19017  mulginvcom  19018  mulgneg2  19027  mhmmulg  19034  omndmul  20053  srgmulgass  20141  srgpcomp  20142  srgpcompp  20143  srgbinomlem4  20153  srgbinomlem  20154  lmodvsmmulgdi  20836  cnfldmulg  21346  cnfldexp  21347  assamulgscmlem2  21843  mplcoe3  21979  mhppwdeg  22071  psdpw  22091  tmdmulg  24013  clmmulg  25034  rprmdvdspow  33505  primrootsunit1  42196  aks6d1c1p6  42213  idomnnzpownz  42231  deg1pow  42240  unitscyglem5  42298  domnexpgn0cl  42622  abvexp  42631  lmodvsmdi  48484
  Copyright terms: Public domain W3C validator