MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0p1 Structured version   Visualization version   GIF version

Theorem mulgnn0p1 18713
Description: Group multiple (exponentiation) operation at a successor, extended to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0p1.b 𝐵 = (Base‘𝐺)
mulgnn0p1.t · = (.g𝐺)
mulgnn0p1.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0p1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))

Proof of Theorem mulgnn0p1
StepHypRef Expression
1 simpr 485 . . 3 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2 simpl3 1192 . . 3 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
3 mulgnn0p1.b . . . 4 𝐵 = (Base‘𝐺)
4 mulgnn0p1.t . . . 4 · = (.g𝐺)
5 mulgnn0p1.p . . . 4 + = (+g𝐺)
63, 4, 5mulgnnp1 18710 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
71, 2, 6syl2anc 584 . 2 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
8 eqid 2738 . . . . . . 7 (0g𝐺) = (0g𝐺)
93, 5, 8mndlid 18403 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
103, 8, 4mulg0 18705 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
1110adantl 482 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
1211oveq1d 7292 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = ((0g𝐺) + 𝑋))
133, 4mulg1 18709 . . . . . . 7 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
1413adantl 482 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (1 · 𝑋) = 𝑋)
159, 12, 143eqtr4rd 2789 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋))
16153adant2 1130 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋))
17 oveq1 7284 . . . . . . 7 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
18 1e0p1 12477 . . . . . . 7 1 = (0 + 1)
1917, 18eqtr4di 2796 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = 1)
2019oveq1d 7292 . . . . 5 (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = (1 · 𝑋))
21 oveq1 7284 . . . . . 6 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
2221oveq1d 7292 . . . . 5 (𝑁 = 0 → ((𝑁 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋))
2320, 22eqeq12d 2754 . . . 4 (𝑁 = 0 → (((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋) ↔ (1 · 𝑋) = ((0 · 𝑋) + 𝑋)))
2416, 23syl5ibrcom 246 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)))
2524imp 407 . 2 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 = 0) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
26 simp2 1136 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → 𝑁 ∈ ℕ0)
27 elnn0 12233 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2826, 27sylib 217 . 2 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
297, 25, 28mpjaodan 956 1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  cfv 6435  (class class class)co 7277  0cc0 10869  1c1 10870   + caddc 10872  cn 11971  0cn0 12231  Basecbs 16910  +gcplusg 16960  0gc0g 17148  Mndcmnd 18383  .gcmg 18698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-nn 11972  df-n0 12232  df-z 12318  df-uz 12581  df-seq 13720  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-mulg 18699
This theorem is referenced by:  mulgaddcom  18725  mulginvcom  18726  mulgneg2  18735  mhmmulg  18742  srgmulgass  19765  srgpcomp  19766  srgpcompp  19767  srgbinomlem4  19777  srgbinomlem  19778  lmodvsmmulgdi  20156  cnfldmulg  20628  cnfldexp  20629  assamulgscmlem2  21102  mplcoe3  21237  mhppwdeg  21338  tmdmulg  23241  clmmulg  24262  omndmul  31337  lmodvsmdi  45685
  Copyright terms: Public domain W3C validator