Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulgnn0p1 | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at a successor, extended to ℕ0. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulgnn0p1.b | ⊢ 𝐵 = (Base‘𝐺) |
mulgnn0p1.t | ⊢ · = (.g‘𝐺) |
mulgnn0p1.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mulgnn0p1 | ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
2 | simpl3 1192 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐵) | |
3 | mulgnn0p1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
4 | mulgnn0p1.t | . . . 4 ⊢ · = (.g‘𝐺) | |
5 | mulgnn0p1.p | . . . 4 ⊢ + = (+g‘𝐺) | |
6 | 3, 4, 5 | mulgnnp1 18710 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
7 | 1, 2, 6 | syl2anc 584 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
8 | eqid 2738 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
9 | 3, 5, 8 | mndlid 18403 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ((0g‘𝐺) + 𝑋) = 𝑋) |
10 | 3, 8, 4 | mulg0 18705 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
11 | 10 | adantl 482 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = (0g‘𝐺)) |
12 | 11 | oveq1d 7292 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ((0 · 𝑋) + 𝑋) = ((0g‘𝐺) + 𝑋)) |
13 | 3, 4 | mulg1 18709 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
14 | 13 | adantl 482 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = 𝑋) |
15 | 9, 12, 14 | 3eqtr4rd 2789 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋)) |
16 | 15 | 3adant2 1130 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋)) |
17 | oveq1 7284 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
18 | 1e0p1 12477 | . . . . . . 7 ⊢ 1 = (0 + 1) | |
19 | 17, 18 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = 1) |
20 | 19 | oveq1d 7292 | . . . . 5 ⊢ (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = (1 · 𝑋)) |
21 | oveq1 7284 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋)) | |
22 | 21 | oveq1d 7292 | . . . . 5 ⊢ (𝑁 = 0 → ((𝑁 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋)) |
23 | 20, 22 | eqeq12d 2754 | . . . 4 ⊢ (𝑁 = 0 → (((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋) ↔ (1 · 𝑋) = ((0 · 𝑋) + 𝑋))) |
24 | 16, 23 | syl5ibrcom 246 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))) |
25 | 24 | imp 407 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 = 0) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
26 | simp2 1136 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ ℕ0) | |
27 | elnn0 12233 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
28 | 26, 27 | sylib 217 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
29 | 7, 25, 28 | mpjaodan 956 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6435 (class class class)co 7277 0cc0 10869 1c1 10870 + caddc 10872 ℕcn 11971 ℕ0cn0 12231 Basecbs 16910 +gcplusg 16960 0gc0g 17148 Mndcmnd 18383 .gcmg 18698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-er 8496 df-en 8732 df-dom 8733 df-sdom 8734 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-nn 11972 df-n0 12232 df-z 12318 df-uz 12581 df-seq 13720 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mulg 18699 |
This theorem is referenced by: mulgaddcom 18725 mulginvcom 18726 mulgneg2 18735 mhmmulg 18742 srgmulgass 19765 srgpcomp 19766 srgpcompp 19767 srgbinomlem4 19777 srgbinomlem 19778 lmodvsmmulgdi 20156 cnfldmulg 20628 cnfldexp 20629 assamulgscmlem2 21102 mplcoe3 21237 mhppwdeg 21338 tmdmulg 23241 clmmulg 24262 omndmul 31337 lmodvsmdi 45685 |
Copyright terms: Public domain | W3C validator |