MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0p1 Structured version   Visualization version   GIF version

Theorem mulgnn0p1 18230
Description: Group multiple (exponentiation) operation at a successor, extended to 0. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0p1.b 𝐵 = (Base‘𝐺)
mulgnn0p1.t · = (.g𝐺)
mulgnn0p1.p + = (+g𝐺)
Assertion
Ref Expression
mulgnn0p1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))

Proof of Theorem mulgnn0p1
StepHypRef Expression
1 simpr 488 . . 3 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2 simpl3 1190 . . 3 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋𝐵)
3 mulgnn0p1.b . . . 4 𝐵 = (Base‘𝐺)
4 mulgnn0p1.t . . . 4 · = (.g𝐺)
5 mulgnn0p1.p . . . 4 + = (+g𝐺)
63, 4, 5mulgnnp1 18227 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
71, 2, 6syl2anc 587 . 2 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
8 eqid 2822 . . . . . . 7 (0g𝐺) = (0g𝐺)
93, 5, 8mndlid 17922 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ((0g𝐺) + 𝑋) = 𝑋)
103, 8, 4mulg0 18222 . . . . . . . 8 (𝑋𝐵 → (0 · 𝑋) = (0g𝐺))
1110adantl 485 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (0 · 𝑋) = (0g𝐺))
1211oveq1d 7155 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ((0 · 𝑋) + 𝑋) = ((0g𝐺) + 𝑋))
133, 4mulg1 18226 . . . . . . 7 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
1413adantl 485 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (1 · 𝑋) = 𝑋)
159, 12, 143eqtr4rd 2868 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋))
16153adant2 1128 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋))
17 oveq1 7147 . . . . . . 7 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
18 1e0p1 12128 . . . . . . 7 1 = (0 + 1)
1917, 18eqtr4di 2875 . . . . . 6 (𝑁 = 0 → (𝑁 + 1) = 1)
2019oveq1d 7155 . . . . 5 (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = (1 · 𝑋))
21 oveq1 7147 . . . . . 6 (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋))
2221oveq1d 7155 . . . . 5 (𝑁 = 0 → ((𝑁 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋))
2320, 22eqeq12d 2838 . . . 4 (𝑁 = 0 → (((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋) ↔ (1 · 𝑋) = ((0 · 𝑋) + 𝑋)))
2416, 23syl5ibrcom 250 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)))
2524imp 410 . 2 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) ∧ 𝑁 = 0) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
26 simp2 1134 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → 𝑁 ∈ ℕ0)
27 elnn0 11887 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2826, 27sylib 221 . 2 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
297, 25, 28mpjaodan 956 1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2114  cfv 6334  (class class class)co 7140  0cc0 10526  1c1 10527   + caddc 10529  cn 11625  0cn0 11885  Basecbs 16474  +gcplusg 16556  0gc0g 16704  Mndcmnd 17902  .gcmg 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-mulg 18216
This theorem is referenced by:  mulgaddcom  18242  mulginvcom  18243  mulgneg2  18252  mhmmulg  18259  srgmulgass  19272  srgpcomp  19273  srgpcompp  19274  srgbinomlem4  19284  srgbinomlem  19285  lmodvsmmulgdi  19660  cnfldmulg  20121  cnfldexp  20122  assamulgscmlem2  20584  mplcoe3  20704  tmdmulg  22695  clmmulg  23704  omndmul  30746  lmodvsmdi  44724
  Copyright terms: Public domain W3C validator