| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgnn0p1 | Structured version Visualization version GIF version | ||
| Description: Group multiple (exponentiation) operation at a successor, extended to ℕ0. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn0p1.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn0p1.t | ⊢ · = (.g‘𝐺) |
| mulgnn0p1.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgnn0p1 | ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 2 | simpl3 1194 | . . 3 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐵) | |
| 3 | mulgnn0p1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mulgnn0p1.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 5 | mulgnn0p1.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 6 | 3, 4, 5 | mulgnnp1 18987 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| 7 | 1, 2, 6 | syl2anc 584 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 ∈ ℕ) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| 8 | eqid 2730 | . . . . . . 7 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 9 | 3, 5, 8 | mndlid 18654 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ((0g‘𝐺) + 𝑋) = 𝑋) |
| 10 | 3, 8, 4 | mulg0 18979 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = (0g‘𝐺)) |
| 11 | 10 | adantl 481 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = (0g‘𝐺)) |
| 12 | 11 | oveq1d 7356 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → ((0 · 𝑋) + 𝑋) = ((0g‘𝐺) + 𝑋)) |
| 13 | 3, 4 | mulg1 18986 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
| 14 | 13 | adantl 481 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = 𝑋) |
| 15 | 9, 12, 14 | 3eqtr4rd 2776 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋)) |
| 16 | 15 | 3adant2 1131 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = ((0 · 𝑋) + 𝑋)) |
| 17 | oveq1 7348 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑁 + 1) = (0 + 1)) | |
| 18 | 1e0p1 12622 | . . . . . . 7 ⊢ 1 = (0 + 1) | |
| 19 | 17, 18 | eqtr4di 2783 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 + 1) = 1) |
| 20 | 19 | oveq1d 7356 | . . . . 5 ⊢ (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = (1 · 𝑋)) |
| 21 | oveq1 7348 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑁 · 𝑋) = (0 · 𝑋)) | |
| 22 | 21 | oveq1d 7356 | . . . . 5 ⊢ (𝑁 = 0 → ((𝑁 · 𝑋) + 𝑋) = ((0 · 𝑋) + 𝑋)) |
| 23 | 20, 22 | eqeq12d 2746 | . . . 4 ⊢ (𝑁 = 0 → (((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋) ↔ (1 · 𝑋) = ((0 · 𝑋) + 𝑋))) |
| 24 | 16, 23 | syl5ibrcom 247 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 = 0 → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))) |
| 25 | 24 | imp 406 | . 2 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) ∧ 𝑁 = 0) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| 26 | simp2 1137 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ ℕ0) | |
| 27 | elnn0 12375 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 28 | 26, 27 | sylib 218 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 29 | 7, 25, 28 | mpjaodan 960 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 0cc0 10998 1c1 10999 + caddc 11001 ℕcn 12117 ℕ0cn0 12373 Basecbs 17112 +gcplusg 17153 0gc0g 17335 Mndcmnd 18634 .gcmg 18972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-seq 13901 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mulg 18973 |
| This theorem is referenced by: mulgaddcom 19003 mulginvcom 19004 mulgneg2 19013 mhmmulg 19020 omndmul 20040 srgmulgass 20128 srgpcomp 20129 srgpcompp 20130 srgbinomlem4 20140 srgbinomlem 20141 lmodvsmmulgdi 20823 cnfldmulg 21333 cnfldexp 21334 assamulgscmlem2 21830 mplcoe3 21966 mhppwdeg 22058 psdpw 22078 tmdmulg 24000 clmmulg 25021 rprmdvdspow 33488 primrootsunit1 42109 aks6d1c1p6 42126 idomnnzpownz 42144 deg1pow 42153 unitscyglem5 42211 domnexpgn0cl 42535 abvexp 42544 lmodvsmdi 48389 |
| Copyright terms: Public domain | W3C validator |