MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnn0z Structured version   Visualization version   GIF version

Theorem mulgnn0z 18645
Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgnn0z.b 𝐵 = (Base‘𝐺)
mulgnn0z.t · = (.g𝐺)
mulgnn0z.o 0 = (0g𝐺)
Assertion
Ref Expression
mulgnn0z ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )

Proof of Theorem mulgnn0z
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elnn0 12165 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 id 22 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
3 mulgnn0z.b . . . . . 6 𝐵 = (Base‘𝐺)
4 mulgnn0z.o . . . . . 6 0 = (0g𝐺)
53, 4mndidcl 18315 . . . . 5 (𝐺 ∈ Mnd → 0𝐵)
6 eqid 2738 . . . . . 6 (+g𝐺) = (+g𝐺)
7 mulgnn0z.t . . . . . 6 · = (.g𝐺)
8 eqid 2738 . . . . . 6 seq1((+g𝐺), (ℕ × { 0 })) = seq1((+g𝐺), (ℕ × { 0 }))
93, 6, 7, 8mulgnn 18623 . . . . 5 ((𝑁 ∈ ℕ ∧ 0𝐵) → (𝑁 · 0 ) = (seq1((+g𝐺), (ℕ × { 0 }))‘𝑁))
102, 5, 9syl2anr 596 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = (seq1((+g𝐺), (ℕ × { 0 }))‘𝑁))
113, 6, 4mndlid 18320 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 0𝐵) → ( 0 (+g𝐺) 0 ) = 0 )
125, 11mpdan 683 . . . . . 6 (𝐺 ∈ Mnd → ( 0 (+g𝐺) 0 ) = 0 )
1312adantr 480 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → ( 0 (+g𝐺) 0 ) = 0 )
14 simpr 484 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
15 nnuz 12550 . . . . . 6 ℕ = (ℤ‘1)
1614, 15eleqtrdi 2849 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ‘1))
175adantr 480 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 0𝐵)
18 elfznn 13214 . . . . . 6 (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ)
19 fvconst2g 7059 . . . . . 6 (( 0𝐵𝑥 ∈ ℕ) → ((ℕ × { 0 })‘𝑥) = 0 )
2017, 18, 19syl2an 595 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × { 0 })‘𝑥) = 0 )
2113, 16, 20seqid3 13695 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (seq1((+g𝐺), (ℕ × { 0 }))‘𝑁) = 0 )
2210, 21eqtrd 2778 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = 0 )
23 oveq1 7262 . . . 4 (𝑁 = 0 → (𝑁 · 0 ) = (0 · 0 ))
243, 4, 7mulg0 18622 . . . . 5 ( 0𝐵 → (0 · 0 ) = 0 )
255, 24syl 17 . . . 4 (𝐺 ∈ Mnd → (0 · 0 ) = 0 )
2623, 25sylan9eqr 2801 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 = 0) → (𝑁 · 0 ) = 0 )
2722, 26jaodan 954 . 2 ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑁 · 0 ) = 0 )
281, 27sylan2b 593 1 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  {csn 4558   × cxp 5578  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  cn 11903  0cn0 12163  cuz 12511  ...cfz 13168  seqcseq 13649  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300  .gcmg 18615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mulg 18616
This theorem is referenced by:  mulgz  18646  mulgnn0ass  18654  odmodnn0  19063  mulgmhm  19344  srg1expzeq1  19690  lply1binomsc  21388  tsmsxp  23214  frobrhm  31387
  Copyright terms: Public domain W3C validator