| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgnn0z | Structured version Visualization version GIF version | ||
| Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn0z.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn0z.t | ⊢ · = (.g‘𝐺) |
| mulgnn0z.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgnn0z | ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12378 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ) | |
| 3 | mulgnn0z.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mulgnn0z.o | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 5 | 3, 4 | mndidcl 18652 | . . . . 5 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 6 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | mulgnn0z.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ seq1((+g‘𝐺), (ℕ × { 0 })) = seq1((+g‘𝐺), (ℕ × { 0 })) | |
| 9 | 3, 6, 7, 8 | mulgnn 18983 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 0 ∈ 𝐵) → (𝑁 · 0 ) = (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁)) |
| 10 | 2, 5, 9 | syl2anr 597 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁)) |
| 11 | 3, 6, 4 | mndlid 18657 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 12 | 5, 11 | mpdan 687 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 14 | simpr 484 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 15 | nnuz 12770 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 16 | 14, 15 | eleqtrdi 2841 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ≥‘1)) |
| 17 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 0 ∈ 𝐵) |
| 18 | elfznn 13448 | . . . . . 6 ⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) | |
| 19 | fvconst2g 7131 | . . . . . 6 ⊢ (( 0 ∈ 𝐵 ∧ 𝑥 ∈ ℕ) → ((ℕ × { 0 })‘𝑥) = 0 ) | |
| 20 | 17, 18, 19 | syl2an 596 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × { 0 })‘𝑥) = 0 ) |
| 21 | 13, 16, 20 | seqid3 13948 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁) = 0 ) |
| 22 | 10, 21 | eqtrd 2766 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = 0 ) |
| 23 | oveq1 7348 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 · 0 ) = (0 · 0 )) | |
| 24 | 3, 4, 7 | mulg0 18982 | . . . . 5 ⊢ ( 0 ∈ 𝐵 → (0 · 0 ) = 0 ) |
| 25 | 5, 24 | syl 17 | . . . 4 ⊢ (𝐺 ∈ Mnd → (0 · 0 ) = 0 ) |
| 26 | 23, 25 | sylan9eqr 2788 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 = 0) → (𝑁 · 0 ) = 0 ) |
| 27 | 22, 26 | jaodan 959 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑁 · 0 ) = 0 ) |
| 28 | 1, 27 | sylan2b 594 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 {csn 4571 × cxp 5609 ‘cfv 6476 (class class class)co 7341 0cc0 11001 1c1 11002 ℕcn 12120 ℕ0cn0 12376 ℤ≥cuz 12727 ...cfz 13402 seqcseq 13903 Basecbs 17115 +gcplusg 17156 0gc0g 17338 Mndcmnd 18637 .gcmg 18975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-seq 13904 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mulg 18976 |
| This theorem is referenced by: mulgz 19010 mulgnn0ass 19018 odmodnn0 19447 mulgmhm 19734 srg1expzeq1 20138 frobrhm 21507 psdmplcl 22072 psdmvr 22079 lply1binomsc 22221 tsmsxp 24065 aks6d1c1p6 42147 aks6d1c2lem3 42159 |
| Copyright terms: Public domain | W3C validator |