| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgnn0z | Structured version Visualization version GIF version | ||
| Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn0z.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn0z.t | ⊢ · = (.g‘𝐺) |
| mulgnn0z.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgnn0z | ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12444 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ) | |
| 3 | mulgnn0z.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mulgnn0z.o | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 5 | 3, 4 | mndidcl 18676 | . . . . 5 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | mulgnn0z.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ seq1((+g‘𝐺), (ℕ × { 0 })) = seq1((+g‘𝐺), (ℕ × { 0 })) | |
| 9 | 3, 6, 7, 8 | mulgnn 19007 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 0 ∈ 𝐵) → (𝑁 · 0 ) = (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁)) |
| 10 | 2, 5, 9 | syl2anr 597 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁)) |
| 11 | 3, 6, 4 | mndlid 18681 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 12 | 5, 11 | mpdan 687 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 14 | simpr 484 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 15 | nnuz 12836 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 16 | 14, 15 | eleqtrdi 2838 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ≥‘1)) |
| 17 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 0 ∈ 𝐵) |
| 18 | elfznn 13514 | . . . . . 6 ⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) | |
| 19 | fvconst2g 7176 | . . . . . 6 ⊢ (( 0 ∈ 𝐵 ∧ 𝑥 ∈ ℕ) → ((ℕ × { 0 })‘𝑥) = 0 ) | |
| 20 | 17, 18, 19 | syl2an 596 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × { 0 })‘𝑥) = 0 ) |
| 21 | 13, 16, 20 | seqid3 14011 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁) = 0 ) |
| 22 | 10, 21 | eqtrd 2764 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = 0 ) |
| 23 | oveq1 7394 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 · 0 ) = (0 · 0 )) | |
| 24 | 3, 4, 7 | mulg0 19006 | . . . . 5 ⊢ ( 0 ∈ 𝐵 → (0 · 0 ) = 0 ) |
| 25 | 5, 24 | syl 17 | . . . 4 ⊢ (𝐺 ∈ Mnd → (0 · 0 ) = 0 ) |
| 26 | 23, 25 | sylan9eqr 2786 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 = 0) → (𝑁 · 0 ) = 0 ) |
| 27 | 22, 26 | jaodan 959 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑁 · 0 ) = 0 ) |
| 28 | 1, 27 | sylan2b 594 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {csn 4589 × cxp 5636 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 ℕcn 12186 ℕ0cn0 12442 ℤ≥cuz 12793 ...cfz 13468 seqcseq 13966 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Mndcmnd 18661 .gcmg 18999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mulg 19000 |
| This theorem is referenced by: mulgz 19034 mulgnn0ass 19042 odmodnn0 19470 mulgmhm 19757 srg1expzeq1 20134 frobrhm 21485 psdmplcl 22049 psdmvr 22056 lply1binomsc 22198 tsmsxp 24042 aks6d1c1p6 42102 aks6d1c2lem3 42114 |
| Copyright terms: Public domain | W3C validator |