| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulgnn0z | Structured version Visualization version GIF version | ||
| Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn0z.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn0z.t | ⊢ · = (.g‘𝐺) |
| mulgnn0z.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| mulgnn0z | ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elnn0 12420 | . 2 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 2 | id 22 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ) | |
| 3 | mulgnn0z.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
| 4 | mulgnn0z.o | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 5 | 3, 4 | mndidcl 18652 | . . . . 5 ⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 6 | eqid 2729 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 7 | mulgnn0z.t | . . . . . 6 ⊢ · = (.g‘𝐺) | |
| 8 | eqid 2729 | . . . . . 6 ⊢ seq1((+g‘𝐺), (ℕ × { 0 })) = seq1((+g‘𝐺), (ℕ × { 0 })) | |
| 9 | 3, 6, 7, 8 | mulgnn 18983 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 0 ∈ 𝐵) → (𝑁 · 0 ) = (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁)) |
| 10 | 2, 5, 9 | syl2anr 597 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁)) |
| 11 | 3, 6, 4 | mndlid 18657 | . . . . . . 7 ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 12 | 5, 11 | mpdan 687 | . . . . . 6 ⊢ (𝐺 ∈ Mnd → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 14 | simpr 484 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 15 | nnuz 12812 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
| 16 | 14, 15 | eleqtrdi 2838 | . . . . 5 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (ℤ≥‘1)) |
| 17 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → 0 ∈ 𝐵) |
| 18 | elfznn 13490 | . . . . . 6 ⊢ (𝑥 ∈ (1...𝑁) → 𝑥 ∈ ℕ) | |
| 19 | fvconst2g 7158 | . . . . . 6 ⊢ (( 0 ∈ 𝐵 ∧ 𝑥 ∈ ℕ) → ((ℕ × { 0 })‘𝑥) = 0 ) | |
| 20 | 17, 18, 19 | syl2an 596 | . . . . 5 ⊢ (((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ (1...𝑁)) → ((ℕ × { 0 })‘𝑥) = 0 ) |
| 21 | 13, 16, 20 | seqid3 13987 | . . . 4 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (seq1((+g‘𝐺), (ℕ × { 0 }))‘𝑁) = 0 ) |
| 22 | 10, 21 | eqtrd 2764 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ) → (𝑁 · 0 ) = 0 ) |
| 23 | oveq1 7376 | . . . 4 ⊢ (𝑁 = 0 → (𝑁 · 0 ) = (0 · 0 )) | |
| 24 | 3, 4, 7 | mulg0 18982 | . . . . 5 ⊢ ( 0 ∈ 𝐵 → (0 · 0 ) = 0 ) |
| 25 | 5, 24 | syl 17 | . . . 4 ⊢ (𝐺 ∈ Mnd → (0 · 0 ) = 0 ) |
| 26 | 23, 25 | sylan9eqr 2786 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 = 0) → (𝑁 · 0 ) = 0 ) |
| 27 | 22, 26 | jaodan 959 | . 2 ⊢ ((𝐺 ∈ Mnd ∧ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) → (𝑁 · 0 ) = 0 ) |
| 28 | 1, 27 | sylan2b 594 | 1 ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {csn 4585 × cxp 5629 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 ℕcn 12162 ℕ0cn0 12418 ℤ≥cuz 12769 ...cfz 13444 seqcseq 13942 Basecbs 17155 +gcplusg 17196 0gc0g 17378 Mndcmnd 18637 .gcmg 18975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-seq 13943 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mulg 18976 |
| This theorem is referenced by: mulgz 19010 mulgnn0ass 19018 odmodnn0 19446 mulgmhm 19733 srg1expzeq1 20110 frobrhm 21461 psdmplcl 22025 psdmvr 22032 lply1binomsc 22174 tsmsxp 24018 aks6d1c1p6 42075 aks6d1c2lem3 42087 |
| Copyright terms: Public domain | W3C validator |