MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quad2 Structured version   Visualization version   GIF version

Theorem quad2 25425
Description: The quadratic equation, without specifying the particular branch 𝐷 to the square root. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
quad.a (𝜑𝐴 ∈ ℂ)
quad.z (𝜑𝐴 ≠ 0)
quad.b (𝜑𝐵 ∈ ℂ)
quad.c (𝜑𝐶 ∈ ℂ)
quad.x (𝜑𝑋 ∈ ℂ)
quad2.d (𝜑𝐷 ∈ ℂ)
quad2.2 (𝜑 → (𝐷↑2) = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
quad2 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))

Proof of Theorem quad2
StepHypRef Expression
1 2cn 11700 . . . . . . . 8 2 ∈ ℂ
2 quad.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 mulcl 10610 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
41, 2, 3sylancr 590 . . . . . . 7 (𝜑 → (2 · 𝐴) ∈ ℂ)
5 quad.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
64, 5mulcld 10650 . . . . . 6 (𝜑 → ((2 · 𝐴) · 𝑋) ∈ ℂ)
7 quad.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
86, 7addcld 10649 . . . . 5 (𝜑 → (((2 · 𝐴) · 𝑋) + 𝐵) ∈ ℂ)
98sqcld 13504 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) ∈ ℂ)
10 quad2.d . . . . 5 (𝜑𝐷 ∈ ℂ)
1110sqcld 13504 . . . 4 (𝜑 → (𝐷↑2) ∈ ℂ)
129, 11subeq0ad 10996 . . 3 (𝜑 → ((((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0 ↔ ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (𝐷↑2)))
135sqcld 13504 . . . . . . 7 (𝜑 → (𝑋↑2) ∈ ℂ)
142, 13mulcld 10650 . . . . . 6 (𝜑 → (𝐴 · (𝑋↑2)) ∈ ℂ)
157, 5mulcld 10650 . . . . . . 7 (𝜑 → (𝐵 · 𝑋) ∈ ℂ)
16 quad.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1715, 16addcld 10649 . . . . . 6 (𝜑 → ((𝐵 · 𝑋) + 𝐶) ∈ ℂ)
1814, 17addcld 10649 . . . . 5 (𝜑 → ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) ∈ ℂ)
19 0cnd 10623 . . . . 5 (𝜑 → 0 ∈ ℂ)
20 4cn 11710 . . . . . 6 4 ∈ ℂ
21 mulcl 10610 . . . . . 6 ((4 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (4 · 𝐴) ∈ ℂ)
2220, 2, 21sylancr 590 . . . . 5 (𝜑 → (4 · 𝐴) ∈ ℂ)
2320a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
24 4ne0 11733 . . . . . . 7 4 ≠ 0
2524a1i 11 . . . . . 6 (𝜑 → 4 ≠ 0)
26 quad.z . . . . . 6 (𝜑𝐴 ≠ 0)
2723, 2, 25, 26mulne0d 11281 . . . . 5 (𝜑 → (4 · 𝐴) ≠ 0)
2818, 19, 22, 27mulcand 11262 . . . 4 (𝜑 → (((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = ((4 · 𝐴) · 0) ↔ ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0))
296sqcld 13504 . . . . . . . 8 (𝜑 → (((2 · 𝐴) · 𝑋)↑2) ∈ ℂ)
306, 7mulcld 10650 . . . . . . . . 9 (𝜑 → (((2 · 𝐴) · 𝑋) · 𝐵) ∈ ℂ)
31 mulcl 10610 . . . . . . . . 9 ((2 ∈ ℂ ∧ (((2 · 𝐴) · 𝑋) · 𝐵) ∈ ℂ) → (2 · (((2 · 𝐴) · 𝑋) · 𝐵)) ∈ ℂ)
321, 30, 31sylancr 590 . . . . . . . 8 (𝜑 → (2 · (((2 · 𝐴) · 𝑋) · 𝐵)) ∈ ℂ)
332, 16mulcld 10650 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
34 mulcl 10610 . . . . . . . . 9 ((4 ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (4 · (𝐴 · 𝐶)) ∈ ℂ)
3520, 33, 34sylancr 590 . . . . . . . 8 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℂ)
3629, 32, 35addassd 10652 . . . . . . 7 (𝜑 → (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (4 · (𝐴 · 𝐶))) = ((((2 · 𝐴) · 𝑋)↑2) + ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶)))))
377sqcld 13504 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℂ)
3829, 32addcld 10649 . . . . . . . 8 (𝜑 → ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) ∈ ℂ)
3937, 38, 35pnncand 11025 . . . . . . 7 (𝜑 → (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (4 · (𝐴 · 𝐶))))
404, 5sqmuld 13518 . . . . . . . . 9 (𝜑 → (((2 · 𝐴) · 𝑋)↑2) = (((2 · 𝐴)↑2) · (𝑋↑2)))
41 sq2 13556 . . . . . . . . . . . . 13 (2↑2) = 4
4241a1i 11 . . . . . . . . . . . 12 (𝜑 → (2↑2) = 4)
432sqvald 13503 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
4442, 43oveq12d 7153 . . . . . . . . . . 11 (𝜑 → ((2↑2) · (𝐴↑2)) = (4 · (𝐴 · 𝐴)))
45 sqmul 13481 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · 𝐴)↑2) = ((2↑2) · (𝐴↑2)))
461, 2, 45sylancr 590 . . . . . . . . . . 11 (𝜑 → ((2 · 𝐴)↑2) = ((2↑2) · (𝐴↑2)))
4723, 2, 2mulassd 10653 . . . . . . . . . . 11 (𝜑 → ((4 · 𝐴) · 𝐴) = (4 · (𝐴 · 𝐴)))
4844, 46, 473eqtr4d 2843 . . . . . . . . . 10 (𝜑 → ((2 · 𝐴)↑2) = ((4 · 𝐴) · 𝐴))
4948oveq1d 7150 . . . . . . . . 9 (𝜑 → (((2 · 𝐴)↑2) · (𝑋↑2)) = (((4 · 𝐴) · 𝐴) · (𝑋↑2)))
5022, 2, 13mulassd 10653 . . . . . . . . 9 (𝜑 → (((4 · 𝐴) · 𝐴) · (𝑋↑2)) = ((4 · 𝐴) · (𝐴 · (𝑋↑2))))
5140, 49, 503eqtrrd 2838 . . . . . . . 8 (𝜑 → ((4 · 𝐴) · (𝐴 · (𝑋↑2))) = (((2 · 𝐴) · 𝑋)↑2))
5222, 15, 16adddid 10654 . . . . . . . . 9 (𝜑 → ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶)) = (((4 · 𝐴) · (𝐵 · 𝑋)) + ((4 · 𝐴) · 𝐶)))
53 2t2e4 11789 . . . . . . . . . . . . . . . . 17 (2 · 2) = 4
5453oveq1i 7145 . . . . . . . . . . . . . . . 16 ((2 · 2) · 𝐴) = (4 · 𝐴)
551a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
5655, 55, 2mulassd 10653 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)))
5754, 56syl5eqr 2847 . . . . . . . . . . . . . . 15 (𝜑 → (4 · 𝐴) = (2 · (2 · 𝐴)))
5857oveq1d 7150 . . . . . . . . . . . . . 14 (𝜑 → ((4 · 𝐴) · 𝐵) = ((2 · (2 · 𝐴)) · 𝐵))
5955, 4, 7mulassd 10653 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (2 · 𝐴)) · 𝐵) = (2 · ((2 · 𝐴) · 𝐵)))
6058, 59eqtrd 2833 . . . . . . . . . . . . 13 (𝜑 → ((4 · 𝐴) · 𝐵) = (2 · ((2 · 𝐴) · 𝐵)))
6160oveq1d 7150 . . . . . . . . . . . 12 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = ((2 · ((2 · 𝐴) · 𝐵)) · 𝑋))
624, 7mulcld 10650 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐴) · 𝐵) ∈ ℂ)
6355, 62, 5mulassd 10653 . . . . . . . . . . . 12 (𝜑 → ((2 · ((2 · 𝐴) · 𝐵)) · 𝑋) = (2 · (((2 · 𝐴) · 𝐵) · 𝑋)))
6461, 63eqtrd 2833 . . . . . . . . . . 11 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = (2 · (((2 · 𝐴) · 𝐵) · 𝑋)))
6522, 7, 5mulassd 10653 . . . . . . . . . . 11 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = ((4 · 𝐴) · (𝐵 · 𝑋)))
664, 7, 5mul32d 10839 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝐴) · 𝐵) · 𝑋) = (((2 · 𝐴) · 𝑋) · 𝐵))
6766oveq2d 7151 . . . . . . . . . . 11 (𝜑 → (2 · (((2 · 𝐴) · 𝐵) · 𝑋)) = (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))
6864, 65, 673eqtr3d 2841 . . . . . . . . . 10 (𝜑 → ((4 · 𝐴) · (𝐵 · 𝑋)) = (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))
6923, 2, 16mulassd 10653 . . . . . . . . . 10 (𝜑 → ((4 · 𝐴) · 𝐶) = (4 · (𝐴 · 𝐶)))
7068, 69oveq12d 7153 . . . . . . . . 9 (𝜑 → (((4 · 𝐴) · (𝐵 · 𝑋)) + ((4 · 𝐴) · 𝐶)) = ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶))))
7152, 70eqtrd 2833 . . . . . . . 8 (𝜑 → ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶)) = ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶))))
7251, 71oveq12d 7153 . . . . . . 7 (𝜑 → (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))) = ((((2 · 𝐴) · 𝑋)↑2) + ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶)))))
7336, 39, 723eqtr4rd 2844 . . . . . 6 (𝜑 → (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))) = (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))))
7422, 14, 17adddid 10654 . . . . . 6 (𝜑 → ((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))))
75 binom2 13575 . . . . . . . . 9 ((((2 · 𝐴) · 𝑋) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)))
766, 7, 75syl2anc 587 . . . . . . . 8 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)))
7738, 37, 76comraddd 10843 . . . . . . 7 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = ((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))))
78 quad2.2 . . . . . . 7 (𝜑 → (𝐷↑2) = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
7977, 78oveq12d 7153 . . . . . 6 (𝜑 → (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))))
8073, 74, 793eqtr4d 2843 . . . . 5 (𝜑 → ((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)))
8122mul01d 10828 . . . . 5 (𝜑 → ((4 · 𝐴) · 0) = 0)
8280, 81eqeq12d 2814 . . . 4 (𝜑 → (((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = ((4 · 𝐴) · 0) ↔ (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0))
8328, 82bitr3d 284 . . 3 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0))
846, 7subnegd 10993 . . . . 5 (𝜑 → (((2 · 𝐴) · 𝑋) − -𝐵) = (((2 · 𝐴) · 𝑋) + 𝐵))
8584oveq1d 7150 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = ((((2 · 𝐴) · 𝑋) + 𝐵)↑2))
8685eqeq1d 2800 . . 3 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (𝐷↑2)))
8712, 83, 863bitr4d 314 . 2 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ ((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2)))
887negcld 10973 . . . 4 (𝜑 → -𝐵 ∈ ℂ)
896, 88subcld 10986 . . 3 (𝜑 → (((2 · 𝐴) · 𝑋) − -𝐵) ∈ ℂ)
90 sqeqor 13574 . . 3 (((((2 · 𝐴) · 𝑋) − -𝐵) ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷)))
9189, 10, 90syl2anc 587 . 2 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷)))
926, 88, 10subaddd 11004 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ↔ (-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋)))
9388, 10addcld 10649 . . . . . 6 (𝜑 → (-𝐵 + 𝐷) ∈ ℂ)
94 2ne0 11729 . . . . . . . 8 2 ≠ 0
9594a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
9655, 2, 95, 26mulne0d 11281 . . . . . 6 (𝜑 → (2 · 𝐴) ≠ 0)
9793, 4, 5, 96divmuld 11427 . . . . 5 (𝜑 → (((-𝐵 + 𝐷) / (2 · 𝐴)) = 𝑋 ↔ ((2 · 𝐴) · 𝑋) = (-𝐵 + 𝐷)))
98 eqcom 2805 . . . . 5 (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ↔ ((-𝐵 + 𝐷) / (2 · 𝐴)) = 𝑋)
99 eqcom 2805 . . . . 5 ((-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋) ↔ ((2 · 𝐴) · 𝑋) = (-𝐵 + 𝐷))
10097, 98, 993bitr4g 317 . . . 4 (𝜑 → (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ↔ (-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋)))
10192, 100bitr4d 285 . . 3 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴))))
10288, 10negsubd 10992 . . . . 5 (𝜑 → (-𝐵 + -𝐷) = (-𝐵𝐷))
103102eqeq1d 2800 . . . 4 (𝜑 → ((-𝐵 + -𝐷) = ((2 · 𝐴) · 𝑋) ↔ (-𝐵𝐷) = ((2 · 𝐴) · 𝑋)))
10410negcld 10973 . . . . 5 (𝜑 → -𝐷 ∈ ℂ)
1056, 88, 104subaddd 11004 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷 ↔ (-𝐵 + -𝐷) = ((2 · 𝐴) · 𝑋)))
10688, 10subcld 10986 . . . . . 6 (𝜑 → (-𝐵𝐷) ∈ ℂ)
107106, 4, 5, 96divmuld 11427 . . . . 5 (𝜑 → (((-𝐵𝐷) / (2 · 𝐴)) = 𝑋 ↔ ((2 · 𝐴) · 𝑋) = (-𝐵𝐷)))
108 eqcom 2805 . . . . 5 (𝑋 = ((-𝐵𝐷) / (2 · 𝐴)) ↔ ((-𝐵𝐷) / (2 · 𝐴)) = 𝑋)
109 eqcom 2805 . . . . 5 ((-𝐵𝐷) = ((2 · 𝐴) · 𝑋) ↔ ((2 · 𝐴) · 𝑋) = (-𝐵𝐷))
110107, 108, 1093bitr4g 317 . . . 4 (𝜑 → (𝑋 = ((-𝐵𝐷) / (2 · 𝐴)) ↔ (-𝐵𝐷) = ((2 · 𝐴) · 𝑋)))
111103, 105, 1103bitr4d 314 . . 3 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷𝑋 = ((-𝐵𝐷) / (2 · 𝐴))))
112101, 111orbi12d 916 . 2 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷) ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))
11387, 91, 1123bitrd 308 1 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wo 844   = wceq 1538  wcel 2111  wne 2987  (class class class)co 7135  cc 10524  0cc0 10526   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860   / cdiv 11286  2c2 11680  4c4 11682  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426
This theorem is referenced by:  quad  25426  dcubic2  25430  dquartlem1  25437
  Copyright terms: Public domain W3C validator