MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quad2 Structured version   Visualization version   GIF version

Theorem quad2 26816
Description: The quadratic equation, without specifying the particular branch 𝐷 to the square root. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
quad.a (𝜑𝐴 ∈ ℂ)
quad.z (𝜑𝐴 ≠ 0)
quad.b (𝜑𝐵 ∈ ℂ)
quad.c (𝜑𝐶 ∈ ℂ)
quad.x (𝜑𝑋 ∈ ℂ)
quad2.d (𝜑𝐷 ∈ ℂ)
quad2.2 (𝜑 → (𝐷↑2) = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
quad2 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))

Proof of Theorem quad2
StepHypRef Expression
1 2cn 12320 . . . . . . . 8 2 ∈ ℂ
2 quad.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 mulcl 11224 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
41, 2, 3sylancr 585 . . . . . . 7 (𝜑 → (2 · 𝐴) ∈ ℂ)
5 quad.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
64, 5mulcld 11266 . . . . . 6 (𝜑 → ((2 · 𝐴) · 𝑋) ∈ ℂ)
7 quad.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
86, 7addcld 11265 . . . . 5 (𝜑 → (((2 · 𝐴) · 𝑋) + 𝐵) ∈ ℂ)
98sqcld 14144 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) ∈ ℂ)
10 quad2.d . . . . 5 (𝜑𝐷 ∈ ℂ)
1110sqcld 14144 . . . 4 (𝜑 → (𝐷↑2) ∈ ℂ)
129, 11subeq0ad 11613 . . 3 (𝜑 → ((((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0 ↔ ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (𝐷↑2)))
135sqcld 14144 . . . . . . 7 (𝜑 → (𝑋↑2) ∈ ℂ)
142, 13mulcld 11266 . . . . . 6 (𝜑 → (𝐴 · (𝑋↑2)) ∈ ℂ)
157, 5mulcld 11266 . . . . . . 7 (𝜑 → (𝐵 · 𝑋) ∈ ℂ)
16 quad.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1715, 16addcld 11265 . . . . . 6 (𝜑 → ((𝐵 · 𝑋) + 𝐶) ∈ ℂ)
1814, 17addcld 11265 . . . . 5 (𝜑 → ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) ∈ ℂ)
19 0cnd 11239 . . . . 5 (𝜑 → 0 ∈ ℂ)
20 4cn 12330 . . . . . 6 4 ∈ ℂ
21 mulcl 11224 . . . . . 6 ((4 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (4 · 𝐴) ∈ ℂ)
2220, 2, 21sylancr 585 . . . . 5 (𝜑 → (4 · 𝐴) ∈ ℂ)
2320a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
24 4ne0 12353 . . . . . . 7 4 ≠ 0
2524a1i 11 . . . . . 6 (𝜑 → 4 ≠ 0)
26 quad.z . . . . . 6 (𝜑𝐴 ≠ 0)
2723, 2, 25, 26mulne0d 11898 . . . . 5 (𝜑 → (4 · 𝐴) ≠ 0)
2818, 19, 22, 27mulcand 11879 . . . 4 (𝜑 → (((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = ((4 · 𝐴) · 0) ↔ ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0))
296sqcld 14144 . . . . . . . 8 (𝜑 → (((2 · 𝐴) · 𝑋)↑2) ∈ ℂ)
306, 7mulcld 11266 . . . . . . . . 9 (𝜑 → (((2 · 𝐴) · 𝑋) · 𝐵) ∈ ℂ)
31 mulcl 11224 . . . . . . . . 9 ((2 ∈ ℂ ∧ (((2 · 𝐴) · 𝑋) · 𝐵) ∈ ℂ) → (2 · (((2 · 𝐴) · 𝑋) · 𝐵)) ∈ ℂ)
321, 30, 31sylancr 585 . . . . . . . 8 (𝜑 → (2 · (((2 · 𝐴) · 𝑋) · 𝐵)) ∈ ℂ)
332, 16mulcld 11266 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
34 mulcl 11224 . . . . . . . . 9 ((4 ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (4 · (𝐴 · 𝐶)) ∈ ℂ)
3520, 33, 34sylancr 585 . . . . . . . 8 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℂ)
3629, 32, 35addassd 11268 . . . . . . 7 (𝜑 → (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (4 · (𝐴 · 𝐶))) = ((((2 · 𝐴) · 𝑋)↑2) + ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶)))))
377sqcld 14144 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℂ)
3829, 32addcld 11265 . . . . . . . 8 (𝜑 → ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) ∈ ℂ)
3937, 38, 35pnncand 11642 . . . . . . 7 (𝜑 → (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (4 · (𝐴 · 𝐶))))
404, 5sqmuld 14158 . . . . . . . . 9 (𝜑 → (((2 · 𝐴) · 𝑋)↑2) = (((2 · 𝐴)↑2) · (𝑋↑2)))
41 sq2 14196 . . . . . . . . . . . . 13 (2↑2) = 4
4241a1i 11 . . . . . . . . . . . 12 (𝜑 → (2↑2) = 4)
432sqvald 14143 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
4442, 43oveq12d 7437 . . . . . . . . . . 11 (𝜑 → ((2↑2) · (𝐴↑2)) = (4 · (𝐴 · 𝐴)))
45 sqmul 14119 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · 𝐴)↑2) = ((2↑2) · (𝐴↑2)))
461, 2, 45sylancr 585 . . . . . . . . . . 11 (𝜑 → ((2 · 𝐴)↑2) = ((2↑2) · (𝐴↑2)))
4723, 2, 2mulassd 11269 . . . . . . . . . . 11 (𝜑 → ((4 · 𝐴) · 𝐴) = (4 · (𝐴 · 𝐴)))
4844, 46, 473eqtr4d 2775 . . . . . . . . . 10 (𝜑 → ((2 · 𝐴)↑2) = ((4 · 𝐴) · 𝐴))
4948oveq1d 7434 . . . . . . . . 9 (𝜑 → (((2 · 𝐴)↑2) · (𝑋↑2)) = (((4 · 𝐴) · 𝐴) · (𝑋↑2)))
5022, 2, 13mulassd 11269 . . . . . . . . 9 (𝜑 → (((4 · 𝐴) · 𝐴) · (𝑋↑2)) = ((4 · 𝐴) · (𝐴 · (𝑋↑2))))
5140, 49, 503eqtrrd 2770 . . . . . . . 8 (𝜑 → ((4 · 𝐴) · (𝐴 · (𝑋↑2))) = (((2 · 𝐴) · 𝑋)↑2))
5222, 15, 16adddid 11270 . . . . . . . . 9 (𝜑 → ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶)) = (((4 · 𝐴) · (𝐵 · 𝑋)) + ((4 · 𝐴) · 𝐶)))
53 2t2e4 12409 . . . . . . . . . . . . . . . . 17 (2 · 2) = 4
5453oveq1i 7429 . . . . . . . . . . . . . . . 16 ((2 · 2) · 𝐴) = (4 · 𝐴)
551a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
5655, 55, 2mulassd 11269 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)))
5754, 56eqtr3id 2779 . . . . . . . . . . . . . . 15 (𝜑 → (4 · 𝐴) = (2 · (2 · 𝐴)))
5857oveq1d 7434 . . . . . . . . . . . . . 14 (𝜑 → ((4 · 𝐴) · 𝐵) = ((2 · (2 · 𝐴)) · 𝐵))
5955, 4, 7mulassd 11269 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (2 · 𝐴)) · 𝐵) = (2 · ((2 · 𝐴) · 𝐵)))
6058, 59eqtrd 2765 . . . . . . . . . . . . 13 (𝜑 → ((4 · 𝐴) · 𝐵) = (2 · ((2 · 𝐴) · 𝐵)))
6160oveq1d 7434 . . . . . . . . . . . 12 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = ((2 · ((2 · 𝐴) · 𝐵)) · 𝑋))
624, 7mulcld 11266 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐴) · 𝐵) ∈ ℂ)
6355, 62, 5mulassd 11269 . . . . . . . . . . . 12 (𝜑 → ((2 · ((2 · 𝐴) · 𝐵)) · 𝑋) = (2 · (((2 · 𝐴) · 𝐵) · 𝑋)))
6461, 63eqtrd 2765 . . . . . . . . . . 11 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = (2 · (((2 · 𝐴) · 𝐵) · 𝑋)))
6522, 7, 5mulassd 11269 . . . . . . . . . . 11 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = ((4 · 𝐴) · (𝐵 · 𝑋)))
664, 7, 5mul32d 11456 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝐴) · 𝐵) · 𝑋) = (((2 · 𝐴) · 𝑋) · 𝐵))
6766oveq2d 7435 . . . . . . . . . . 11 (𝜑 → (2 · (((2 · 𝐴) · 𝐵) · 𝑋)) = (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))
6864, 65, 673eqtr3d 2773 . . . . . . . . . 10 (𝜑 → ((4 · 𝐴) · (𝐵 · 𝑋)) = (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))
6923, 2, 16mulassd 11269 . . . . . . . . . 10 (𝜑 → ((4 · 𝐴) · 𝐶) = (4 · (𝐴 · 𝐶)))
7068, 69oveq12d 7437 . . . . . . . . 9 (𝜑 → (((4 · 𝐴) · (𝐵 · 𝑋)) + ((4 · 𝐴) · 𝐶)) = ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶))))
7152, 70eqtrd 2765 . . . . . . . 8 (𝜑 → ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶)) = ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶))))
7251, 71oveq12d 7437 . . . . . . 7 (𝜑 → (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))) = ((((2 · 𝐴) · 𝑋)↑2) + ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶)))))
7336, 39, 723eqtr4rd 2776 . . . . . 6 (𝜑 → (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))) = (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))))
7422, 14, 17adddid 11270 . . . . . 6 (𝜑 → ((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))))
75 binom2 14216 . . . . . . . . 9 ((((2 · 𝐴) · 𝑋) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)))
766, 7, 75syl2anc 582 . . . . . . . 8 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)))
7738, 37, 76comraddd 11460 . . . . . . 7 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = ((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))))
78 quad2.2 . . . . . . 7 (𝜑 → (𝐷↑2) = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
7977, 78oveq12d 7437 . . . . . 6 (𝜑 → (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))))
8073, 74, 793eqtr4d 2775 . . . . 5 (𝜑 → ((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)))
8122mul01d 11445 . . . . 5 (𝜑 → ((4 · 𝐴) · 0) = 0)
8280, 81eqeq12d 2741 . . . 4 (𝜑 → (((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = ((4 · 𝐴) · 0) ↔ (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0))
8328, 82bitr3d 280 . . 3 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0))
846, 7subnegd 11610 . . . . 5 (𝜑 → (((2 · 𝐴) · 𝑋) − -𝐵) = (((2 · 𝐴) · 𝑋) + 𝐵))
8584oveq1d 7434 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = ((((2 · 𝐴) · 𝑋) + 𝐵)↑2))
8685eqeq1d 2727 . . 3 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (𝐷↑2)))
8712, 83, 863bitr4d 310 . 2 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ ((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2)))
887negcld 11590 . . . 4 (𝜑 → -𝐵 ∈ ℂ)
896, 88subcld 11603 . . 3 (𝜑 → (((2 · 𝐴) · 𝑋) − -𝐵) ∈ ℂ)
90 sqeqor 14215 . . 3 (((((2 · 𝐴) · 𝑋) − -𝐵) ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷)))
9189, 10, 90syl2anc 582 . 2 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷)))
926, 88, 10subaddd 11621 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ↔ (-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋)))
9388, 10addcld 11265 . . . . . 6 (𝜑 → (-𝐵 + 𝐷) ∈ ℂ)
94 2ne0 12349 . . . . . . . 8 2 ≠ 0
9594a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
9655, 2, 95, 26mulne0d 11898 . . . . . 6 (𝜑 → (2 · 𝐴) ≠ 0)
9793, 4, 5, 96divmuld 12045 . . . . 5 (𝜑 → (((-𝐵 + 𝐷) / (2 · 𝐴)) = 𝑋 ↔ ((2 · 𝐴) · 𝑋) = (-𝐵 + 𝐷)))
98 eqcom 2732 . . . . 5 (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ↔ ((-𝐵 + 𝐷) / (2 · 𝐴)) = 𝑋)
99 eqcom 2732 . . . . 5 ((-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋) ↔ ((2 · 𝐴) · 𝑋) = (-𝐵 + 𝐷))
10097, 98, 993bitr4g 313 . . . 4 (𝜑 → (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ↔ (-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋)))
10192, 100bitr4d 281 . . 3 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴))))
10288, 10negsubd 11609 . . . . 5 (𝜑 → (-𝐵 + -𝐷) = (-𝐵𝐷))
103102eqeq1d 2727 . . . 4 (𝜑 → ((-𝐵 + -𝐷) = ((2 · 𝐴) · 𝑋) ↔ (-𝐵𝐷) = ((2 · 𝐴) · 𝑋)))
10410negcld 11590 . . . . 5 (𝜑 → -𝐷 ∈ ℂ)
1056, 88, 104subaddd 11621 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷 ↔ (-𝐵 + -𝐷) = ((2 · 𝐴) · 𝑋)))
10688, 10subcld 11603 . . . . . 6 (𝜑 → (-𝐵𝐷) ∈ ℂ)
107106, 4, 5, 96divmuld 12045 . . . . 5 (𝜑 → (((-𝐵𝐷) / (2 · 𝐴)) = 𝑋 ↔ ((2 · 𝐴) · 𝑋) = (-𝐵𝐷)))
108 eqcom 2732 . . . . 5 (𝑋 = ((-𝐵𝐷) / (2 · 𝐴)) ↔ ((-𝐵𝐷) / (2 · 𝐴)) = 𝑋)
109 eqcom 2732 . . . . 5 ((-𝐵𝐷) = ((2 · 𝐴) · 𝑋) ↔ ((2 · 𝐴) · 𝑋) = (-𝐵𝐷))
110107, 108, 1093bitr4g 313 . . . 4 (𝜑 → (𝑋 = ((-𝐵𝐷) / (2 · 𝐴)) ↔ (-𝐵𝐷) = ((2 · 𝐴) · 𝑋)))
111103, 105, 1103bitr4d 310 . . 3 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷𝑋 = ((-𝐵𝐷) / (2 · 𝐴))))
112101, 111orbi12d 916 . 2 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷) ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))
11387, 91, 1123bitrd 304 1 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wo 845   = wceq 1533  wcel 2098  wne 2929  (class class class)co 7419  cc 11138  0cc0 11140   + caddc 11143   · cmul 11145  cmin 11476  -cneg 11477   / cdiv 11903  2c2 12300  4c4 12302  cexp 14062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12506  df-z 12592  df-uz 12856  df-seq 14003  df-exp 14063
This theorem is referenced by:  quad  26817  dcubic2  26821  dquartlem1  26828
  Copyright terms: Public domain W3C validator