MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quad2 Structured version   Visualization version   GIF version

Theorem quad2 25017
Description: The quadratic equation, without specifying the particular branch 𝐷 to the square root. (Contributed by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
quad.a (𝜑𝐴 ∈ ℂ)
quad.z (𝜑𝐴 ≠ 0)
quad.b (𝜑𝐵 ∈ ℂ)
quad.c (𝜑𝐶 ∈ ℂ)
quad.x (𝜑𝑋 ∈ ℂ)
quad2.d (𝜑𝐷 ∈ ℂ)
quad2.2 (𝜑 → (𝐷↑2) = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
Assertion
Ref Expression
quad2 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))

Proof of Theorem quad2
StepHypRef Expression
1 2cn 11450 . . . . . . . 8 2 ∈ ℂ
2 quad.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
3 mulcl 10356 . . . . . . . 8 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (2 · 𝐴) ∈ ℂ)
41, 2, 3sylancr 581 . . . . . . 7 (𝜑 → (2 · 𝐴) ∈ ℂ)
5 quad.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
64, 5mulcld 10397 . . . . . 6 (𝜑 → ((2 · 𝐴) · 𝑋) ∈ ℂ)
7 quad.b . . . . . 6 (𝜑𝐵 ∈ ℂ)
86, 7addcld 10396 . . . . 5 (𝜑 → (((2 · 𝐴) · 𝑋) + 𝐵) ∈ ℂ)
98sqcld 13325 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) ∈ ℂ)
10 quad2.d . . . . 5 (𝜑𝐷 ∈ ℂ)
1110sqcld 13325 . . . 4 (𝜑 → (𝐷↑2) ∈ ℂ)
129, 11subeq0ad 10744 . . 3 (𝜑 → ((((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0 ↔ ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (𝐷↑2)))
135sqcld 13325 . . . . . . 7 (𝜑 → (𝑋↑2) ∈ ℂ)
142, 13mulcld 10397 . . . . . 6 (𝜑 → (𝐴 · (𝑋↑2)) ∈ ℂ)
157, 5mulcld 10397 . . . . . . 7 (𝜑 → (𝐵 · 𝑋) ∈ ℂ)
16 quad.c . . . . . . 7 (𝜑𝐶 ∈ ℂ)
1715, 16addcld 10396 . . . . . 6 (𝜑 → ((𝐵 · 𝑋) + 𝐶) ∈ ℂ)
1814, 17addcld 10396 . . . . 5 (𝜑 → ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) ∈ ℂ)
19 0cnd 10369 . . . . 5 (𝜑 → 0 ∈ ℂ)
20 4cn 11461 . . . . . 6 4 ∈ ℂ
21 mulcl 10356 . . . . . 6 ((4 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (4 · 𝐴) ∈ ℂ)
2220, 2, 21sylancr 581 . . . . 5 (𝜑 → (4 · 𝐴) ∈ ℂ)
2320a1i 11 . . . . . 6 (𝜑 → 4 ∈ ℂ)
24 4ne0 11490 . . . . . . 7 4 ≠ 0
2524a1i 11 . . . . . 6 (𝜑 → 4 ≠ 0)
26 quad.z . . . . . 6 (𝜑𝐴 ≠ 0)
2723, 2, 25, 26mulne0d 11027 . . . . 5 (𝜑 → (4 · 𝐴) ≠ 0)
2818, 19, 22, 27mulcand 11008 . . . 4 (𝜑 → (((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = ((4 · 𝐴) · 0) ↔ ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0))
296sqcld 13325 . . . . . . . 8 (𝜑 → (((2 · 𝐴) · 𝑋)↑2) ∈ ℂ)
306, 7mulcld 10397 . . . . . . . . 9 (𝜑 → (((2 · 𝐴) · 𝑋) · 𝐵) ∈ ℂ)
31 mulcl 10356 . . . . . . . . 9 ((2 ∈ ℂ ∧ (((2 · 𝐴) · 𝑋) · 𝐵) ∈ ℂ) → (2 · (((2 · 𝐴) · 𝑋) · 𝐵)) ∈ ℂ)
321, 30, 31sylancr 581 . . . . . . . 8 (𝜑 → (2 · (((2 · 𝐴) · 𝑋) · 𝐵)) ∈ ℂ)
332, 16mulcld 10397 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐶) ∈ ℂ)
34 mulcl 10356 . . . . . . . . 9 ((4 ∈ ℂ ∧ (𝐴 · 𝐶) ∈ ℂ) → (4 · (𝐴 · 𝐶)) ∈ ℂ)
3520, 33, 34sylancr 581 . . . . . . . 8 (𝜑 → (4 · (𝐴 · 𝐶)) ∈ ℂ)
3629, 32, 35addassd 10399 . . . . . . 7 (𝜑 → (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (4 · (𝐴 · 𝐶))) = ((((2 · 𝐴) · 𝑋)↑2) + ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶)))))
377sqcld 13325 . . . . . . . 8 (𝜑 → (𝐵↑2) ∈ ℂ)
3829, 32addcld 10396 . . . . . . . 8 (𝜑 → ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) ∈ ℂ)
3937, 38, 35pnncand 10773 . . . . . . 7 (𝜑 → (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (4 · (𝐴 · 𝐶))))
404, 5sqmuld 13339 . . . . . . . . 9 (𝜑 → (((2 · 𝐴) · 𝑋)↑2) = (((2 · 𝐴)↑2) · (𝑋↑2)))
41 sq2 13279 . . . . . . . . . . . . 13 (2↑2) = 4
4241a1i 11 . . . . . . . . . . . 12 (𝜑 → (2↑2) = 4)
432sqvald 13324 . . . . . . . . . . . 12 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
4442, 43oveq12d 6940 . . . . . . . . . . 11 (𝜑 → ((2↑2) · (𝐴↑2)) = (4 · (𝐴 · 𝐴)))
45 sqmul 13244 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · 𝐴)↑2) = ((2↑2) · (𝐴↑2)))
461, 2, 45sylancr 581 . . . . . . . . . . 11 (𝜑 → ((2 · 𝐴)↑2) = ((2↑2) · (𝐴↑2)))
4723, 2, 2mulassd 10400 . . . . . . . . . . 11 (𝜑 → ((4 · 𝐴) · 𝐴) = (4 · (𝐴 · 𝐴)))
4844, 46, 473eqtr4d 2824 . . . . . . . . . 10 (𝜑 → ((2 · 𝐴)↑2) = ((4 · 𝐴) · 𝐴))
4948oveq1d 6937 . . . . . . . . 9 (𝜑 → (((2 · 𝐴)↑2) · (𝑋↑2)) = (((4 · 𝐴) · 𝐴) · (𝑋↑2)))
5022, 2, 13mulassd 10400 . . . . . . . . 9 (𝜑 → (((4 · 𝐴) · 𝐴) · (𝑋↑2)) = ((4 · 𝐴) · (𝐴 · (𝑋↑2))))
5140, 49, 503eqtrrd 2819 . . . . . . . 8 (𝜑 → ((4 · 𝐴) · (𝐴 · (𝑋↑2))) = (((2 · 𝐴) · 𝑋)↑2))
5222, 15, 16adddid 10401 . . . . . . . . 9 (𝜑 → ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶)) = (((4 · 𝐴) · (𝐵 · 𝑋)) + ((4 · 𝐴) · 𝐶)))
53 2t2e4 11546 . . . . . . . . . . . . . . . . 17 (2 · 2) = 4
5453oveq1i 6932 . . . . . . . . . . . . . . . 16 ((2 · 2) · 𝐴) = (4 · 𝐴)
551a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → 2 ∈ ℂ)
5655, 55, 2mulassd 10400 . . . . . . . . . . . . . . . 16 (𝜑 → ((2 · 2) · 𝐴) = (2 · (2 · 𝐴)))
5754, 56syl5eqr 2828 . . . . . . . . . . . . . . 15 (𝜑 → (4 · 𝐴) = (2 · (2 · 𝐴)))
5857oveq1d 6937 . . . . . . . . . . . . . 14 (𝜑 → ((4 · 𝐴) · 𝐵) = ((2 · (2 · 𝐴)) · 𝐵))
5955, 4, 7mulassd 10400 . . . . . . . . . . . . . 14 (𝜑 → ((2 · (2 · 𝐴)) · 𝐵) = (2 · ((2 · 𝐴) · 𝐵)))
6058, 59eqtrd 2814 . . . . . . . . . . . . 13 (𝜑 → ((4 · 𝐴) · 𝐵) = (2 · ((2 · 𝐴) · 𝐵)))
6160oveq1d 6937 . . . . . . . . . . . 12 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = ((2 · ((2 · 𝐴) · 𝐵)) · 𝑋))
624, 7mulcld 10397 . . . . . . . . . . . . 13 (𝜑 → ((2 · 𝐴) · 𝐵) ∈ ℂ)
6355, 62, 5mulassd 10400 . . . . . . . . . . . 12 (𝜑 → ((2 · ((2 · 𝐴) · 𝐵)) · 𝑋) = (2 · (((2 · 𝐴) · 𝐵) · 𝑋)))
6461, 63eqtrd 2814 . . . . . . . . . . 11 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = (2 · (((2 · 𝐴) · 𝐵) · 𝑋)))
6522, 7, 5mulassd 10400 . . . . . . . . . . 11 (𝜑 → (((4 · 𝐴) · 𝐵) · 𝑋) = ((4 · 𝐴) · (𝐵 · 𝑋)))
664, 7, 5mul32d 10586 . . . . . . . . . . . 12 (𝜑 → (((2 · 𝐴) · 𝐵) · 𝑋) = (((2 · 𝐴) · 𝑋) · 𝐵))
6766oveq2d 6938 . . . . . . . . . . 11 (𝜑 → (2 · (((2 · 𝐴) · 𝐵) · 𝑋)) = (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))
6864, 65, 673eqtr3d 2822 . . . . . . . . . 10 (𝜑 → ((4 · 𝐴) · (𝐵 · 𝑋)) = (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))
6923, 2, 16mulassd 10400 . . . . . . . . . 10 (𝜑 → ((4 · 𝐴) · 𝐶) = (4 · (𝐴 · 𝐶)))
7068, 69oveq12d 6940 . . . . . . . . 9 (𝜑 → (((4 · 𝐴) · (𝐵 · 𝑋)) + ((4 · 𝐴) · 𝐶)) = ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶))))
7152, 70eqtrd 2814 . . . . . . . 8 (𝜑 → ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶)) = ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶))))
7251, 71oveq12d 6940 . . . . . . 7 (𝜑 → (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))) = ((((2 · 𝐴) · 𝑋)↑2) + ((2 · (((2 · 𝐴) · 𝑋) · 𝐵)) + (4 · (𝐴 · 𝐶)))))
7336, 39, 723eqtr4rd 2825 . . . . . 6 (𝜑 → (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))) = (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))))
7422, 14, 17adddid 10401 . . . . . 6 (𝜑 → ((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = (((4 · 𝐴) · (𝐴 · (𝑋↑2))) + ((4 · 𝐴) · ((𝐵 · 𝑋) + 𝐶))))
75 binom2 13298 . . . . . . . . 9 ((((2 · 𝐴) · 𝑋) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)))
766, 7, 75syl2anc 579 . . . . . . . 8 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)))
7738, 37addcomd 10578 . . . . . . . 8 (𝜑 → (((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵))) + (𝐵↑2)) = ((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))))
7876, 77eqtrd 2814 . . . . . . 7 (𝜑 → ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = ((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))))
79 quad2.2 . . . . . . 7 (𝜑 → (𝐷↑2) = ((𝐵↑2) − (4 · (𝐴 · 𝐶))))
8078, 79oveq12d 6940 . . . . . 6 (𝜑 → (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = (((𝐵↑2) + ((((2 · 𝐴) · 𝑋)↑2) + (2 · (((2 · 𝐴) · 𝑋) · 𝐵)))) − ((𝐵↑2) − (4 · (𝐴 · 𝐶)))))
8173, 74, 803eqtr4d 2824 . . . . 5 (𝜑 → ((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)))
8222mul01d 10575 . . . . 5 (𝜑 → ((4 · 𝐴) · 0) = 0)
8381, 82eqeq12d 2793 . . . 4 (𝜑 → (((4 · 𝐴) · ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶))) = ((4 · 𝐴) · 0) ↔ (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0))
8428, 83bitr3d 273 . . 3 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (((((2 · 𝐴) · 𝑋) + 𝐵)↑2) − (𝐷↑2)) = 0))
856, 7subnegd 10741 . . . . 5 (𝜑 → (((2 · 𝐴) · 𝑋) − -𝐵) = (((2 · 𝐴) · 𝑋) + 𝐵))
8685oveq1d 6937 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = ((((2 · 𝐴) · 𝑋) + 𝐵)↑2))
8786eqeq1d 2780 . . 3 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) + 𝐵)↑2) = (𝐷↑2)))
8812, 84, 873bitr4d 303 . 2 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ ((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2)))
897negcld 10721 . . . 4 (𝜑 → -𝐵 ∈ ℂ)
906, 89subcld 10734 . . 3 (𝜑 → (((2 · 𝐴) · 𝑋) − -𝐵) ∈ ℂ)
91 sqeqor 13297 . . 3 (((((2 · 𝐴) · 𝑋) − -𝐵) ∈ ℂ ∧ 𝐷 ∈ ℂ) → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷)))
9290, 10, 91syl2anc 579 . 2 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵)↑2) = (𝐷↑2) ↔ ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷)))
936, 89, 10subaddd 10752 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ↔ (-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋)))
9489, 10addcld 10396 . . . . . 6 (𝜑 → (-𝐵 + 𝐷) ∈ ℂ)
95 2ne0 11486 . . . . . . . 8 2 ≠ 0
9695a1i 11 . . . . . . 7 (𝜑 → 2 ≠ 0)
9755, 2, 96, 26mulne0d 11027 . . . . . 6 (𝜑 → (2 · 𝐴) ≠ 0)
9894, 4, 5, 97divmuld 11173 . . . . 5 (𝜑 → (((-𝐵 + 𝐷) / (2 · 𝐴)) = 𝑋 ↔ ((2 · 𝐴) · 𝑋) = (-𝐵 + 𝐷)))
99 eqcom 2785 . . . . 5 (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ↔ ((-𝐵 + 𝐷) / (2 · 𝐴)) = 𝑋)
100 eqcom 2785 . . . . 5 ((-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋) ↔ ((2 · 𝐴) · 𝑋) = (-𝐵 + 𝐷))
10198, 99, 1003bitr4g 306 . . . 4 (𝜑 → (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ↔ (-𝐵 + 𝐷) = ((2 · 𝐴) · 𝑋)))
10293, 101bitr4d 274 . . 3 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴))))
10389, 10negsubd 10740 . . . . 5 (𝜑 → (-𝐵 + -𝐷) = (-𝐵𝐷))
104103eqeq1d 2780 . . . 4 (𝜑 → ((-𝐵 + -𝐷) = ((2 · 𝐴) · 𝑋) ↔ (-𝐵𝐷) = ((2 · 𝐴) · 𝑋)))
10510negcld 10721 . . . . 5 (𝜑 → -𝐷 ∈ ℂ)
1066, 89, 105subaddd 10752 . . . 4 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷 ↔ (-𝐵 + -𝐷) = ((2 · 𝐴) · 𝑋)))
10789, 10subcld 10734 . . . . . 6 (𝜑 → (-𝐵𝐷) ∈ ℂ)
108107, 4, 5, 97divmuld 11173 . . . . 5 (𝜑 → (((-𝐵𝐷) / (2 · 𝐴)) = 𝑋 ↔ ((2 · 𝐴) · 𝑋) = (-𝐵𝐷)))
109 eqcom 2785 . . . . 5 (𝑋 = ((-𝐵𝐷) / (2 · 𝐴)) ↔ ((-𝐵𝐷) / (2 · 𝐴)) = 𝑋)
110 eqcom 2785 . . . . 5 ((-𝐵𝐷) = ((2 · 𝐴) · 𝑋) ↔ ((2 · 𝐴) · 𝑋) = (-𝐵𝐷))
111108, 109, 1103bitr4g 306 . . . 4 (𝜑 → (𝑋 = ((-𝐵𝐷) / (2 · 𝐴)) ↔ (-𝐵𝐷) = ((2 · 𝐴) · 𝑋)))
112104, 106, 1113bitr4d 303 . . 3 (𝜑 → ((((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷𝑋 = ((-𝐵𝐷) / (2 · 𝐴))))
113102, 112orbi12d 905 . 2 (𝜑 → (((((2 · 𝐴) · 𝑋) − -𝐵) = 𝐷 ∨ (((2 · 𝐴) · 𝑋) − -𝐵) = -𝐷) ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))
11488, 92, 1133bitrd 297 1 (𝜑 → (((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ↔ (𝑋 = ((-𝐵 + 𝐷) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵𝐷) / (2 · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wo 836   = wceq 1601  wcel 2107  wne 2969  (class class class)co 6922  cc 10270  0cc0 10272   + caddc 10275   · cmul 10277  cmin 10606  -cneg 10607   / cdiv 11032  2c2 11430  4c4 11432  cexp 13178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-n0 11643  df-z 11729  df-uz 11993  df-seq 13120  df-exp 13179
This theorem is referenced by:  quad  25018  dcubic2  25022  dquartlem1  25029
  Copyright terms: Public domain W3C validator