MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemo Structured version   Visualization version   GIF version

Theorem pntlemo 27652
Description: Lemma for pnt 27659. Combine all the estimates to establish a smaller eventual bound on 𝑅(𝑍) / 𝑍. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.C (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
Assertion
Ref Expression
pntlemo (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑧,𝑢,𝐿   𝑦,𝐾,𝑧   𝑧,𝑀   𝑧,𝑁   𝑢,𝑖,𝑦,𝑧,𝑅   𝑧,𝑈   𝑧,𝑊   𝑦,𝑋,𝑧   𝑖,𝑌,𝑧   𝑢,𝑎,𝑦,𝑧,𝐸   𝑢,𝑍,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐶(𝑦,𝑢,𝑖,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑖,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑖,𝑎)   𝐸(𝑖)   𝐹(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐾(𝑢,𝑖,𝑎)   𝐿(𝑖,𝑎)   𝑀(𝑦,𝑢,𝑖,𝑎)   𝑁(𝑦,𝑢,𝑖,𝑎)   𝑊(𝑦,𝑢,𝑖,𝑎)   𝑋(𝑢,𝑖,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑖,𝑎)

Proof of Theorem pntlemo
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . . . 10 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . . . 10 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . . . . 10 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . . . . 10 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . . . . 10 𝐾 = (exp‘(𝐵 / 𝐸))
11 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
12 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
13 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
14 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
15 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15pntlemb 27642 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
1716simp1d 1142 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
181pntrf 27608 . . . . . . . . 9 𝑅:ℝ+⟶ℝ
1918ffvelcdmi 7102 . . . . . . . 8 (𝑍 ∈ ℝ+ → (𝑅𝑍) ∈ ℝ)
2017, 19syl 17 . . . . . . 7 (𝜑 → (𝑅𝑍) ∈ ℝ)
2120, 17rerpdivcld 13109 . . . . . 6 (𝜑 → ((𝑅𝑍) / 𝑍) ∈ ℝ)
2221recnd 11290 . . . . 5 (𝜑 → ((𝑅𝑍) / 𝑍) ∈ ℂ)
2322abscld 15476 . . . 4 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ∈ ℝ)
2417relogcld 26666 . . . 4 (𝜑 → (log‘𝑍) ∈ ℝ)
2523, 24remulcld 11292 . . 3 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ∈ ℝ)
267rpred 13078 . . . . . 6 (𝜑𝑈 ∈ ℝ)
27 3re 12347 . . . . . . . 8 3 ∈ ℝ
2827a1i 11 . . . . . . 7 (𝜑 → 3 ∈ ℝ)
2924, 28readdcld 11291 . . . . . 6 (𝜑 → ((log‘𝑍) + 3) ∈ ℝ)
3026, 29remulcld 11292 . . . . 5 (𝜑 → (𝑈 · ((log‘𝑍) + 3)) ∈ ℝ)
31 2re 12341 . . . . . . 7 2 ∈ ℝ
3231a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
331, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 27640 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3433simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
3534simp3d 1144 . . . . . . . . 9 (𝜑 → (𝑈𝐸) ∈ ℝ+)
3635rpred 13078 . . . . . . . 8 (𝜑 → (𝑈𝐸) ∈ ℝ)
371, 2, 3, 4, 5, 6pntlemd 27639 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
3837simp1d 1142 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
3933simp1d 1142 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ+)
40 2z 12651 . . . . . . . . . . . 12 2 ∈ ℤ
41 rpexpcl 14122 . . . . . . . . . . . 12 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
4239, 40, 41sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℝ+)
4338, 42rpmulcld 13094 . . . . . . . . . 10 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
44 3nn0 12546 . . . . . . . . . . . . 13 3 ∈ ℕ0
45 2nn 12340 . . . . . . . . . . . . 13 2 ∈ ℕ
4644, 45decnncl 12755 . . . . . . . . . . . 12 32 ∈ ℕ
47 nnrp 13047 . . . . . . . . . . . 12 (32 ∈ ℕ → 32 ∈ ℝ+)
4846, 47ax-mp 5 . . . . . . . . . . 11 32 ∈ ℝ+
49 rpmulcl 13059 . . . . . . . . . . 11 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
5048, 3, 49sylancr 587 . . . . . . . . . 10 (𝜑 → (32 · 𝐵) ∈ ℝ+)
5143, 50rpdivcld 13095 . . . . . . . . 9 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℝ+)
5251rpred 13078 . . . . . . . 8 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℝ)
5336, 52remulcld 11292 . . . . . . 7 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) ∈ ℝ)
5453, 24remulcld 11292 . . . . . 6 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) ∈ ℝ)
5532, 54remulcld 11292 . . . . 5 (𝜑 → (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ∈ ℝ)
5630, 55resubcld 11692 . . . 4 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ∈ ℝ)
5713rpred 13078 . . . 4 (𝜑𝐶 ∈ ℝ)
5856, 57readdcld 11291 . . 3 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶) ∈ ℝ)
597rpcnd 13080 . . . . . 6 (𝜑𝑈 ∈ ℂ)
6053recnd 11290 . . . . . 6 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) ∈ ℂ)
6124recnd 11290 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
6259, 60, 61subdird 11721 . . . . 5 (𝜑 → ((𝑈 − ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵)))) · (log‘𝑍)) = ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
6338rpcnd 13080 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℂ)
6442rpcnd 13080 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℂ)
6550rpcnne0d 13087 . . . . . . . . . . 11 (𝜑 → ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0))
66 div23 11942 . . . . . . . . . . 11 ((𝐿 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧ ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0)) → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) = ((𝐿 / (32 · 𝐵)) · (𝐸↑2)))
6763, 64, 65, 66syl3anc 1372 . . . . . . . . . 10 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) = ((𝐿 / (32 · 𝐵)) · (𝐸↑2)))
689oveq1i 7442 . . . . . . . . . . . 12 (𝐸↑2) = ((𝑈 / 𝐷)↑2)
6937simp2d 1143 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ+)
7069rpcnd 13080 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℂ)
7169rpne0d 13083 . . . . . . . . . . . . 13 (𝜑𝐷 ≠ 0)
7259, 70, 71sqdivd 14200 . . . . . . . . . . . 12 (𝜑 → ((𝑈 / 𝐷)↑2) = ((𝑈↑2) / (𝐷↑2)))
7368, 72eqtrid 2788 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) = ((𝑈↑2) / (𝐷↑2)))
7473oveq2d 7448 . . . . . . . . . 10 (𝜑 → ((𝐿 / (32 · 𝐵)) · (𝐸↑2)) = ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))))
7538, 50rpdivcld 13095 . . . . . . . . . . . 12 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℝ+)
7675rpcnd 13080 . . . . . . . . . . 11 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℂ)
7759sqcld 14185 . . . . . . . . . . 11 (𝜑 → (𝑈↑2) ∈ ℂ)
78 rpexpcl 14122 . . . . . . . . . . . . 13 ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+)
7969, 40, 78sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐷↑2) ∈ ℝ+)
8079rpcnne0d 13087 . . . . . . . . . . 11 (𝜑 → ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0))
81 divass 11941 . . . . . . . . . . . 12 (((𝐿 / (32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0)) → (((𝐿 / (32 · 𝐵)) · (𝑈↑2)) / (𝐷↑2)) = ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))))
82 div23 11942 . . . . . . . . . . . 12 (((𝐿 / (32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0)) → (((𝐿 / (32 · 𝐵)) · (𝑈↑2)) / (𝐷↑2)) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8381, 82eqtr3d 2778 . . . . . . . . . . 11 (((𝐿 / (32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0)) → ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8476, 77, 80, 83syl3anc 1372 . . . . . . . . . 10 (𝜑 → ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8567, 74, 843eqtrd 2780 . . . . . . . . 9 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8685oveq2d 7448 . . . . . . . 8 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
87 df-3 12331 . . . . . . . . . . . . 13 3 = (2 + 1)
8887oveq2i 7443 . . . . . . . . . . . 12 (𝑈↑3) = (𝑈↑(2 + 1))
89 2nn0 12545 . . . . . . . . . . . . 13 2 ∈ ℕ0
90 expp1 14110 . . . . . . . . . . . . 13 ((𝑈 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝑈↑(2 + 1)) = ((𝑈↑2) · 𝑈))
9159, 89, 90sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝑈↑(2 + 1)) = ((𝑈↑2) · 𝑈))
9288, 91eqtrid 2788 . . . . . . . . . . 11 (𝜑 → (𝑈↑3) = ((𝑈↑2) · 𝑈))
9377, 59mulcomd 11283 . . . . . . . . . . 11 (𝜑 → ((𝑈↑2) · 𝑈) = (𝑈 · (𝑈↑2)))
9492, 93eqtrd 2776 . . . . . . . . . 10 (𝜑 → (𝑈↑3) = (𝑈 · (𝑈↑2)))
9594oveq2d 7448 . . . . . . . . 9 (𝜑 → (𝐹 · (𝑈↑3)) = (𝐹 · (𝑈 · (𝑈↑2))))
9637simp3d 1144 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℝ+)
9796rpcnd 13080 . . . . . . . . . 10 (𝜑𝐹 ∈ ℂ)
9897, 59, 77mulassd 11285 . . . . . . . . 9 (𝜑 → ((𝐹 · 𝑈) · (𝑈↑2)) = (𝐹 · (𝑈 · (𝑈↑2))))
99 1cnd 11257 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
10069rpreccld 13088 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 𝐷) ∈ ℝ+)
101100rpcnd 13080 . . . . . . . . . . . . . . 15 (𝜑 → (1 / 𝐷) ∈ ℂ)
10299, 101, 59subdird 11721 . . . . . . . . . . . . . 14 (𝜑 → ((1 − (1 / 𝐷)) · 𝑈) = ((1 · 𝑈) − ((1 / 𝐷) · 𝑈)))
10359mullidd 11280 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝑈) = 𝑈)
10459, 70, 71divrec2d 12048 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈 / 𝐷) = ((1 / 𝐷) · 𝑈))
1059, 104eqtr2id 2789 . . . . . . . . . . . . . . 15 (𝜑 → ((1 / 𝐷) · 𝑈) = 𝐸)
106103, 105oveq12d 7450 . . . . . . . . . . . . . 14 (𝜑 → ((1 · 𝑈) − ((1 / 𝐷) · 𝑈)) = (𝑈𝐸))
107102, 106eqtr2d 2777 . . . . . . . . . . . . 13 (𝜑 → (𝑈𝐸) = ((1 − (1 / 𝐷)) · 𝑈))
108107oveq1d 7447 . . . . . . . . . . . 12 (𝜑 → ((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))))
1096oveq1i 7442 . . . . . . . . . . . . 13 (𝐹 · 𝑈) = (((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · 𝑈)
11099, 101subcld 11621 . . . . . . . . . . . . . 14 (𝜑 → (1 − (1 / 𝐷)) ∈ ℂ)
11175, 79rpdivcld 13095 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+)
112111rpcnd 13080 . . . . . . . . . . . . . 14 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℂ)
113110, 112, 59mul32d 11472 . . . . . . . . . . . . 13 (𝜑 → (((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · 𝑈) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))))
114109, 113eqtrid 2788 . . . . . . . . . . . 12 (𝜑 → (𝐹 · 𝑈) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))))
115108, 114eqtr4d 2779 . . . . . . . . . . 11 (𝜑 → ((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) = (𝐹 · 𝑈))
116115oveq1d 7447 . . . . . . . . . 10 (𝜑 → (((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · (𝑈↑2)) = ((𝐹 · 𝑈) · (𝑈↑2)))
11735rpcnd 13080 . . . . . . . . . . 11 (𝜑 → (𝑈𝐸) ∈ ℂ)
118117, 112, 77mulassd 11285 . . . . . . . . . 10 (𝜑 → (((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · (𝑈↑2)) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
119116, 118eqtr3d 2778 . . . . . . . . 9 (𝜑 → ((𝐹 · 𝑈) · (𝑈↑2)) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
12095, 98, 1193eqtr2d 2782 . . . . . . . 8 (𝜑 → (𝐹 · (𝑈↑3)) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
12186, 120eqtr4d 2779 . . . . . . 7 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) = (𝐹 · (𝑈↑3)))
122121oveq2d 7448 . . . . . 6 (𝜑 → (𝑈 − ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵)))) = (𝑈 − (𝐹 · (𝑈↑3))))
123122oveq1d 7447 . . . . 5 (𝜑 → ((𝑈 − ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵)))) · (log‘𝑍)) = ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
12462, 123eqtr3d 2778 . . . 4 (𝜑 → ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) = ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
12526, 24remulcld 11292 . . . . 5 (𝜑 → (𝑈 · (log‘𝑍)) ∈ ℝ)
126125, 54resubcld 11692 . . . 4 (𝜑 → ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ∈ ℝ)
127124, 126eqeltrrd 2841 . . 3 (𝜑 → ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)) ∈ ℝ)
12817rpred 13078 . . . . . . . 8 (𝜑𝑍 ∈ ℝ)
12916simp2d 1143 . . . . . . . . 9 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
130129simp1d 1142 . . . . . . . 8 (𝜑 → 1 < 𝑍)
131128, 130rplogcld 26672 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ+)
13232, 131rerpdivcld 13109 . . . . . 6 (𝜑 → (2 / (log‘𝑍)) ∈ ℝ)
133 fzfid 14015 . . . . . . 7 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
13417adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℝ+)
135 elfznn 13594 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
136135adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
137136nnrpd 13076 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
138134, 137rpdivcld 13095 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 / 𝑛) ∈ ℝ+)
13918ffvelcdmi 7102 . . . . . . . . . . . 12 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
140138, 139syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
141140, 134rerpdivcld 13109 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
142141recnd 11290 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
143142abscld 15476 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
144137relogcld 26666 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
145143, 144remulcld 11292 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ)
146133, 145fsumrecl 15771 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ)
147132, 146remulcld 11292 . . . . 5 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ)
148147, 57readdcld 11291 . . . 4 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶) ∈ ℝ)
14920recnd 11290 . . . . . . . . . . 11 (𝜑 → (𝑅𝑍) ∈ ℂ)
150149abscld 15476 . . . . . . . . . 10 (𝜑 → (abs‘(𝑅𝑍)) ∈ ℝ)
151150recnd 11290 . . . . . . . . 9 (𝜑 → (abs‘(𝑅𝑍)) ∈ ℂ)
152151, 61mulcld 11282 . . . . . . . 8 (𝜑 → ((abs‘(𝑅𝑍)) · (log‘𝑍)) ∈ ℂ)
153132recnd 11290 . . . . . . . . 9 (𝜑 → (2 / (log‘𝑍)) ∈ ℂ)
154140recnd 11290 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℂ)
155154abscld 15476 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℝ)
156155, 144remulcld 11292 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
157133, 156fsumrecl 15771 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
158157recnd 11290 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
159153, 158mulcld 11282 . . . . . . . 8 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
16017rpcnd 13080 . . . . . . . 8 (𝜑𝑍 ∈ ℂ)
16117rpne0d 13083 . . . . . . . 8 (𝜑𝑍 ≠ 0)
162152, 159, 160, 161divsubdird 12083 . . . . . . 7 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) = ((((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) − (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍)))
163151, 61, 160, 161div23d 12081 . . . . . . . . 9 (𝜑 → (((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) = (((abs‘(𝑅𝑍)) / 𝑍) · (log‘𝑍)))
164149, 160, 161absdivd 15495 . . . . . . . . . . 11 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) = ((abs‘(𝑅𝑍)) / (abs‘𝑍)))
16517rprege0d 13085 . . . . . . . . . . . . 13 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
166 absid 15336 . . . . . . . . . . . . 13 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → (abs‘𝑍) = 𝑍)
167165, 166syl 17 . . . . . . . . . . . 12 (𝜑 → (abs‘𝑍) = 𝑍)
168167oveq2d 7448 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝑅𝑍)) / (abs‘𝑍)) = ((abs‘(𝑅𝑍)) / 𝑍))
169164, 168eqtrd 2776 . . . . . . . . . 10 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) = ((abs‘(𝑅𝑍)) / 𝑍))
170169oveq1d 7447 . . . . . . . . 9 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) = (((abs‘(𝑅𝑍)) / 𝑍) · (log‘𝑍)))
171163, 170eqtr4d 2779 . . . . . . . 8 (𝜑 → (((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) = ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)))
172153, 158, 160, 161divassd 12079 . . . . . . . . 9 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍) = ((2 / (log‘𝑍)) · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍)))
173160adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℂ)
174161adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ≠ 0)
175154, 173, 174absdivd 15495 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / (abs‘𝑍)))
176167adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘𝑍) = 𝑍)
177176oveq2d 7448 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) / (abs‘𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍))
178175, 177eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍))
179178oveq1d 7447 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛)))
180155recnd 11290 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℂ)
181144recnd 11290 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℂ)
18217rpcnne0d 13087 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
183182adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
184 div23 11942 . . . . . . . . . . . . . 14 (((abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛)))
185180, 181, 183, 184syl3anc 1372 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛)))
186179, 185eqtr4d 2779 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
187186sumeq2dv 15739 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
188156recnd 11290 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
189133, 160, 188, 161fsumdivc 15823 . . . . . . . . . . 11 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
190187, 189eqtr4d 2779 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
191190oveq2d 7448 . . . . . . . . 9 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) = ((2 / (log‘𝑍)) · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍)))
192172, 191eqtr4d 2779 . . . . . . . 8 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
193171, 192oveq12d 7450 . . . . . . 7 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) − (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍)) = (((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
194162, 193eqtrd 2776 . . . . . 6 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) = (((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
195 2fveq3 6910 . . . . . . . . . . 11 (𝑧 = 𝑍 → (abs‘(𝑅𝑧)) = (abs‘(𝑅𝑍)))
196 fveq2 6905 . . . . . . . . . . 11 (𝑧 = 𝑍 → (log‘𝑧) = (log‘𝑍))
197195, 196oveq12d 7450 . . . . . . . . . 10 (𝑧 = 𝑍 → ((abs‘(𝑅𝑧)) · (log‘𝑧)) = ((abs‘(𝑅𝑍)) · (log‘𝑍)))
198196oveq2d 7448 . . . . . . . . . . 11 (𝑧 = 𝑍 → (2 / (log‘𝑧)) = (2 / (log‘𝑍)))
199 oveq2 7440 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝑧 / 𝑖) = (𝑧 / 𝑛))
200199fveq2d 6909 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (𝑅‘(𝑧 / 𝑖)) = (𝑅‘(𝑧 / 𝑛)))
201200fveq2d 6909 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (abs‘(𝑅‘(𝑧 / 𝑖))) = (abs‘(𝑅‘(𝑧 / 𝑛))))
202 fveq2 6905 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (log‘𝑖) = (log‘𝑛))
203201, 202oveq12d 7450 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → ((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = ((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))
204203cbvsumv 15733 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛))
205 fvoveq1 7455 . . . . . . . . . . . . . 14 (𝑧 = 𝑍 → (⌊‘(𝑧 / 𝑌)) = (⌊‘(𝑍 / 𝑌)))
206205oveq2d 7448 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → (1...(⌊‘(𝑧 / 𝑌))) = (1...(⌊‘(𝑍 / 𝑌))))
207 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑧 = 𝑍)
208207fvoveq1d 7454 . . . . . . . . . . . . . . 15 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑧 / 𝑛)) = (𝑅‘(𝑍 / 𝑛)))
209208fveq2d 6909 . . . . . . . . . . . . . 14 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑧 / 𝑛))) = (abs‘(𝑅‘(𝑍 / 𝑛))))
210209oveq1d 7447 . . . . . . . . . . . . 13 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))
211206, 210sumeq12rdv 15744 . . . . . . . . . . . 12 (𝑧 = 𝑍 → Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))
212204, 211eqtrid 2788 . . . . . . . . . . 11 (𝑧 = 𝑍 → Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))
213198, 212oveq12d 7450 . . . . . . . . . 10 (𝑧 = 𝑍 → ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖))) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))))
214197, 213oveq12d 7450 . . . . . . . . 9 (𝑧 = 𝑍 → (((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) = (((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))))
215 id 22 . . . . . . . . 9 (𝑧 = 𝑍𝑧 = 𝑍)
216214, 215oveq12d 7450 . . . . . . . 8 (𝑧 = 𝑍 → ((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) = ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍))
217216breq1d 5152 . . . . . . 7 (𝑧 = 𝑍 → (((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶 ↔ ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) ≤ 𝐶))
218 pntlem1.C . . . . . . 7 (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
219 1re 11262 . . . . . . . . 9 1 ∈ ℝ
220 rexr 11308 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ ℝ*)
221 elioopnf 13484 . . . . . . . . 9 (1 ∈ ℝ* → (𝑍 ∈ (1(,)+∞) ↔ (𝑍 ∈ ℝ ∧ 1 < 𝑍)))
222219, 220, 221mp2b 10 . . . . . . . 8 (𝑍 ∈ (1(,)+∞) ↔ (𝑍 ∈ ℝ ∧ 1 < 𝑍))
223128, 130, 222sylanbrc 583 . . . . . . 7 (𝜑𝑍 ∈ (1(,)+∞))
224217, 218, 223rspcdva 3622 . . . . . 6 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) ≤ 𝐶)
225194, 224eqbrtrrd 5166 . . . . 5 (𝜑 → (((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ 𝐶)
22625, 147, 57lesubadd2d 11863 . . . . 5 (𝜑 → ((((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ 𝐶 ↔ ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶)))
227225, 226mpbid 232 . . . 4 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶))
228 2cnd 12345 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
229143recnd 11290 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℂ)
230229, 181mulcld 11282 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℂ)
231133, 230fsumcl 15770 . . . . . . 7 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℂ)
232131rpne0d 13083 . . . . . . 7 (𝜑 → (log‘𝑍) ≠ 0)
233228, 231, 61, 232div23d 12081 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
23424resqcld 14166 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ)
23552, 234remulcld 11292 . . . . . . . . . . 11 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ)
23636, 235remulcld 11292 . . . . . . . . . 10 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ)
237 remulcl 11241 . . . . . . . . . 10 ((2 ∈ ℝ ∧ ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ) → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ∈ ℝ)
23831, 236, 237sylancr 587 . . . . . . . . 9 (𝜑 → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ∈ ℝ)
23930, 24remulcld 11292 . . . . . . . . 9 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) ∈ ℝ)
240 remulcl 11241 . . . . . . . . . 10 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ)
24131, 146, 240sylancr 587 . . . . . . . . 9 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ)
24226adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℝ)
243242, 136nndivred 12321 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℝ)
244243, 143resubcld 11692 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
245244, 144remulcld 11292 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
246133, 245fsumrecl 15771 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
24732, 246remulcld 11292 . . . . . . . . . 10 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ∈ ℝ)
248239, 241resubcld 11692 . . . . . . . . . 10 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ∈ ℝ)
249 pntlem1.m . . . . . . . . . . . 12 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
250 pntlem1.n . . . . . . . . . . . 12 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
251 pntlem1.U . . . . . . . . . . . 12 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
252 pntlem1.K . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
2531, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 249, 250, 251, 252pntlemf 27650 . . . . . . . . . . 11 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
254 2pos 12370 . . . . . . . . . . . . 13 0 < 2
255254a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 2)
256 lemul2 12121 . . . . . . . . . . . 12 ((((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
257236, 246, 32, 255, 256syl112anc 1375 . . . . . . . . . . 11 (𝜑 → (((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
258253, 257mpbid 232 . . . . . . . . . 10 (𝜑 → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
259243recnd 11290 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℂ)
260259, 229, 181subdird 11721 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
261260sumeq2dv 15739 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
262243, 144remulcld 11292 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ)
263262recnd 11290 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℂ)
264133, 263, 230fsumsub 15825 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
265261, 264eqtrd 2776 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
266265oveq2d 7448 . . . . . . . . . . . 12 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) = (2 · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
267133, 262fsumrecl 15771 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ)
268267recnd 11290 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℂ)
269228, 268, 231subdid 11720 . . . . . . . . . . . 12 (𝜑 → (2 · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) = ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
270266, 269eqtrd 2776 . . . . . . . . . . 11 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) = ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
271 remulcl 11241 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ∈ ℝ)
27231, 267, 271sylancr 587 . . . . . . . . . . . 12 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ∈ ℝ)
2731, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 249, 250, 251, 252pntlemk 27651 . . . . . . . . . . . 12 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
274272, 239, 241, 273lesub1dd 11880 . . . . . . . . . . 11 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
275270, 274eqbrtrd 5164 . . . . . . . . . 10 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
276238, 247, 248, 258, 275letrd 11419 . . . . . . . . 9 (𝜑 → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
277238, 239, 241, 276lesubd 11868 . . . . . . . 8 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))))
27830recnd 11290 . . . . . . . . . 10 (𝜑 → (𝑈 · ((log‘𝑍) + 3)) ∈ ℂ)
27955recnd 11290 . . . . . . . . . 10 (𝜑 → (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ∈ ℂ)
280278, 279, 61subdird 11721 . . . . . . . . 9 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍))))
28154recnd 11290 . . . . . . . . . . . 12 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) ∈ ℂ)
282228, 281, 61mulassd 11285 . . . . . . . . . . 11 (𝜑 → ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍)) = (2 · ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍))))
28360, 61, 61mulassd 11285 . . . . . . . . . . . . 13 (𝜑 → ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍)) = (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍) · (log‘𝑍))))
28461sqvald 14184 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
285284oveq2d 7448 . . . . . . . . . . . . 13 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍)↑2)) = (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍) · (log‘𝑍))))
28651rpcnd 13080 . . . . . . . . . . . . . 14 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℂ)
287234recnd 11290 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍)↑2) ∈ ℂ)
288117, 286, 287mulassd 11285 . . . . . . . . . . . . 13 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍)↑2)) = ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))
289283, 285, 2883eqtr2d 2782 . . . . . . . . . . . 12 (𝜑 → ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍)) = ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))
290289oveq2d 7448 . . . . . . . . . . 11 (𝜑 → (2 · ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍))) = (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))))
291282, 290eqtrd 2776 . . . . . . . . . 10 (𝜑 → ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍)) = (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))))
292291oveq2d 7448 . . . . . . . . 9 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍))) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))))
293280, 292eqtrd 2776 . . . . . . . 8 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))))
294277, 293breqtrrd 5170 . . . . . . 7 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)))
295241, 56, 131ledivmul2d 13132 . . . . . . 7 (𝜑 → (((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ↔ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍))))
296294, 295mpbird 257 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
297233, 296eqbrtrrd 5166 . . . . 5 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
298147, 56, 57, 297leadd1dd 11878 . . . 4 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶))
29925, 148, 58, 227, 298letrd 11419 . . 3 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶))
300 remulcl 11241 . . . . . . . . 9 ((𝑈 ∈ ℝ ∧ 3 ∈ ℝ) → (𝑈 · 3) ∈ ℝ)
30126, 27, 300sylancl 586 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℝ)
302301, 57readdcld 11291 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ)
30316simp3d 1144 . . . . . . . 8 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
304303simp3d 1144 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))
305302, 54, 125, 304leadd2dd 11879 . . . . . 6 (𝜑 → ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)) ≤ ((𝑈 · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
30628recnd 11290 . . . . . . . . 9 (𝜑 → 3 ∈ ℂ)
30759, 61, 306adddid 11286 . . . . . . . 8 (𝜑 → (𝑈 · ((log‘𝑍) + 3)) = ((𝑈 · (log‘𝑍)) + (𝑈 · 3)))
308307oveq1d 7447 . . . . . . 7 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) = (((𝑈 · (log‘𝑍)) + (𝑈 · 3)) + 𝐶))
309125recnd 11290 . . . . . . . 8 (𝜑 → (𝑈 · (log‘𝑍)) ∈ ℂ)
31059, 306mulcld 11282 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℂ)
31113rpcnd 13080 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
312309, 310, 311addassd 11284 . . . . . . 7 (𝜑 → (((𝑈 · (log‘𝑍)) + (𝑈 · 3)) + 𝐶) = ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)))
313308, 312eqtrd 2776 . . . . . 6 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) = ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)))
3142812timesd 12511 . . . . . . . 8 (𝜑 → (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) = ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
315314oveq2d 7448 . . . . . . 7 (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
316309, 281, 281nppcan3d 11648 . . . . . . 7 (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = ((𝑈 · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
317315, 316eqtrd 2776 . . . . . 6 (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = ((𝑈 · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
318305, 313, 3173brtr4d 5174 . . . . 5 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ≤ (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
31930, 57readdcld 11291 . . . . . 6 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ∈ ℝ)
320319, 55, 126lesubaddd 11861 . . . . 5 (𝜑 → ((((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ≤ ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ↔ ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ≤ (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))))
321318, 320mpbird 257 . . . 4 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ≤ ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
322278, 311, 279addsubd 11642 . . . 4 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶))
323321, 322, 1243brtr3d 5173 . . 3 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
32425, 58, 127, 299, 323letrd 11419 . 2 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
325 3z 12652 . . . . . . 7 3 ∈ ℤ
326 rpexpcl 14122 . . . . . . 7 ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℤ) → (𝑈↑3) ∈ ℝ+)
3277, 325, 326sylancl 586 . . . . . 6 (𝜑 → (𝑈↑3) ∈ ℝ+)
32896, 327rpmulcld 13094 . . . . 5 (𝜑 → (𝐹 · (𝑈↑3)) ∈ ℝ+)
329328rpred 13078 . . . 4 (𝜑 → (𝐹 · (𝑈↑3)) ∈ ℝ)
33026, 329resubcld 11692 . . 3 (𝜑 → (𝑈 − (𝐹 · (𝑈↑3))) ∈ ℝ)
33123, 330, 131lemul1d 13121 . 2 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))) ↔ ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍))))
332324, 331mpbird 257 1 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069   class class class wbr 5142  cmpt 5224  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  +∞cpnf 11293  *cxr 11295   < clt 11296  cle 11297  cmin 11493   / cdiv 11921  cn 12267  2c2 12322  3c3 12323  4c4 12324  0cn0 12528  cz 12615  cdc 12735  +crp 13035  (,)cioo 13388  [,)cico 13390  [,]cicc 13391  ...cfz 13548  cfl 13831  cexp 14103  csqrt 15273  abscabs 15274  Σcsu 15723  expce 16098  eceu 16099  logclog 26597  ψcchp 27137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-xnn0 12602  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-e 16105  df-sin 16106  df-cos 16107  df-tan 16108  df-pi 16109  df-dvds 16292  df-gcd 16533  df-prm 16710  df-pc 16876  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-cmp 23396  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-ulm 26421  df-log 26599  df-atan 26911  df-em 27037  df-vma 27142  df-chp 27143
This theorem is referenced by:  pntleme  27653
  Copyright terms: Public domain W3C validator