MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemo Structured version   Visualization version   GIF version

Theorem pntlemo 26660
Description: Lemma for pnt 26667. Combine all the estimates to establish a smaller eventual bound on 𝑅(𝑍) / 𝑍. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.C (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
Assertion
Ref Expression
pntlemo (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑧,𝑢,𝐿   𝑦,𝐾,𝑧   𝑧,𝑀   𝑧,𝑁   𝑢,𝑖,𝑦,𝑧,𝑅   𝑧,𝑈   𝑧,𝑊   𝑦,𝑋,𝑧   𝑖,𝑌,𝑧   𝑢,𝑎,𝑦,𝑧,𝐸   𝑢,𝑍,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐶(𝑦,𝑢,𝑖,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑖,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑖,𝑎)   𝐸(𝑖)   𝐹(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐾(𝑢,𝑖,𝑎)   𝐿(𝑖,𝑎)   𝑀(𝑦,𝑢,𝑖,𝑎)   𝑁(𝑦,𝑢,𝑖,𝑎)   𝑊(𝑦,𝑢,𝑖,𝑎)   𝑋(𝑢,𝑖,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑖,𝑎)

Proof of Theorem pntlemo
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . . . 10 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . . . 10 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . . . . 10 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . . . . 10 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . . . . 10 𝐾 = (exp‘(𝐵 / 𝐸))
11 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
12 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
13 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
14 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
15 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15pntlemb 26650 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
1716simp1d 1140 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
181pntrf 26616 . . . . . . . . 9 𝑅:ℝ+⟶ℝ
1918ffvelrni 6942 . . . . . . . 8 (𝑍 ∈ ℝ+ → (𝑅𝑍) ∈ ℝ)
2017, 19syl 17 . . . . . . 7 (𝜑 → (𝑅𝑍) ∈ ℝ)
2120, 17rerpdivcld 12732 . . . . . 6 (𝜑 → ((𝑅𝑍) / 𝑍) ∈ ℝ)
2221recnd 10934 . . . . 5 (𝜑 → ((𝑅𝑍) / 𝑍) ∈ ℂ)
2322abscld 15076 . . . 4 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ∈ ℝ)
2417relogcld 25683 . . . 4 (𝜑 → (log‘𝑍) ∈ ℝ)
2523, 24remulcld 10936 . . 3 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ∈ ℝ)
267rpred 12701 . . . . . 6 (𝜑𝑈 ∈ ℝ)
27 3re 11983 . . . . . . . 8 3 ∈ ℝ
2827a1i 11 . . . . . . 7 (𝜑 → 3 ∈ ℝ)
2924, 28readdcld 10935 . . . . . 6 (𝜑 → ((log‘𝑍) + 3) ∈ ℝ)
3026, 29remulcld 10936 . . . . 5 (𝜑 → (𝑈 · ((log‘𝑍) + 3)) ∈ ℝ)
31 2re 11977 . . . . . . 7 2 ∈ ℝ
3231a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
331, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 26648 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3433simp3d 1142 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
3534simp3d 1142 . . . . . . . . 9 (𝜑 → (𝑈𝐸) ∈ ℝ+)
3635rpred 12701 . . . . . . . 8 (𝜑 → (𝑈𝐸) ∈ ℝ)
371, 2, 3, 4, 5, 6pntlemd 26647 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
3837simp1d 1140 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
3933simp1d 1140 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ+)
40 2z 12282 . . . . . . . . . . . 12 2 ∈ ℤ
41 rpexpcl 13729 . . . . . . . . . . . 12 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
4239, 40, 41sylancl 585 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℝ+)
4338, 42rpmulcld 12717 . . . . . . . . . 10 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
44 3nn0 12181 . . . . . . . . . . . . 13 3 ∈ ℕ0
45 2nn 11976 . . . . . . . . . . . . 13 2 ∈ ℕ
4644, 45decnncl 12386 . . . . . . . . . . . 12 32 ∈ ℕ
47 nnrp 12670 . . . . . . . . . . . 12 (32 ∈ ℕ → 32 ∈ ℝ+)
4846, 47ax-mp 5 . . . . . . . . . . 11 32 ∈ ℝ+
49 rpmulcl 12682 . . . . . . . . . . 11 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
5048, 3, 49sylancr 586 . . . . . . . . . 10 (𝜑 → (32 · 𝐵) ∈ ℝ+)
5143, 50rpdivcld 12718 . . . . . . . . 9 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℝ+)
5251rpred 12701 . . . . . . . 8 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℝ)
5336, 52remulcld 10936 . . . . . . 7 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) ∈ ℝ)
5453, 24remulcld 10936 . . . . . 6 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) ∈ ℝ)
5532, 54remulcld 10936 . . . . 5 (𝜑 → (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ∈ ℝ)
5630, 55resubcld 11333 . . . 4 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ∈ ℝ)
5713rpred 12701 . . . 4 (𝜑𝐶 ∈ ℝ)
5856, 57readdcld 10935 . . 3 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶) ∈ ℝ)
597rpcnd 12703 . . . . . 6 (𝜑𝑈 ∈ ℂ)
6053recnd 10934 . . . . . 6 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) ∈ ℂ)
6124recnd 10934 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
6259, 60, 61subdird 11362 . . . . 5 (𝜑 → ((𝑈 − ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵)))) · (log‘𝑍)) = ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
6338rpcnd 12703 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℂ)
6442rpcnd 12703 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℂ)
6550rpcnne0d 12710 . . . . . . . . . . 11 (𝜑 → ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0))
66 div23 11582 . . . . . . . . . . 11 ((𝐿 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧ ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0)) → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) = ((𝐿 / (32 · 𝐵)) · (𝐸↑2)))
6763, 64, 65, 66syl3anc 1369 . . . . . . . . . 10 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) = ((𝐿 / (32 · 𝐵)) · (𝐸↑2)))
689oveq1i 7265 . . . . . . . . . . . 12 (𝐸↑2) = ((𝑈 / 𝐷)↑2)
6937simp2d 1141 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ+)
7069rpcnd 12703 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℂ)
7169rpne0d 12706 . . . . . . . . . . . . 13 (𝜑𝐷 ≠ 0)
7259, 70, 71sqdivd 13805 . . . . . . . . . . . 12 (𝜑 → ((𝑈 / 𝐷)↑2) = ((𝑈↑2) / (𝐷↑2)))
7368, 72syl5eq 2791 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) = ((𝑈↑2) / (𝐷↑2)))
7473oveq2d 7271 . . . . . . . . . 10 (𝜑 → ((𝐿 / (32 · 𝐵)) · (𝐸↑2)) = ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))))
7538, 50rpdivcld 12718 . . . . . . . . . . . 12 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℝ+)
7675rpcnd 12703 . . . . . . . . . . 11 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℂ)
7759sqcld 13790 . . . . . . . . . . 11 (𝜑 → (𝑈↑2) ∈ ℂ)
78 rpexpcl 13729 . . . . . . . . . . . . 13 ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+)
7969, 40, 78sylancl 585 . . . . . . . . . . . 12 (𝜑 → (𝐷↑2) ∈ ℝ+)
8079rpcnne0d 12710 . . . . . . . . . . 11 (𝜑 → ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0))
81 divass 11581 . . . . . . . . . . . 12 (((𝐿 / (32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0)) → (((𝐿 / (32 · 𝐵)) · (𝑈↑2)) / (𝐷↑2)) = ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))))
82 div23 11582 . . . . . . . . . . . 12 (((𝐿 / (32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0)) → (((𝐿 / (32 · 𝐵)) · (𝑈↑2)) / (𝐷↑2)) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8381, 82eqtr3d 2780 . . . . . . . . . . 11 (((𝐿 / (32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0)) → ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8476, 77, 80, 83syl3anc 1369 . . . . . . . . . 10 (𝜑 → ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8567, 74, 843eqtrd 2782 . . . . . . . . 9 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8685oveq2d 7271 . . . . . . . 8 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
87 df-3 11967 . . . . . . . . . . . . 13 3 = (2 + 1)
8887oveq2i 7266 . . . . . . . . . . . 12 (𝑈↑3) = (𝑈↑(2 + 1))
89 2nn0 12180 . . . . . . . . . . . . 13 2 ∈ ℕ0
90 expp1 13717 . . . . . . . . . . . . 13 ((𝑈 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝑈↑(2 + 1)) = ((𝑈↑2) · 𝑈))
9159, 89, 90sylancl 585 . . . . . . . . . . . 12 (𝜑 → (𝑈↑(2 + 1)) = ((𝑈↑2) · 𝑈))
9288, 91syl5eq 2791 . . . . . . . . . . 11 (𝜑 → (𝑈↑3) = ((𝑈↑2) · 𝑈))
9377, 59mulcomd 10927 . . . . . . . . . . 11 (𝜑 → ((𝑈↑2) · 𝑈) = (𝑈 · (𝑈↑2)))
9492, 93eqtrd 2778 . . . . . . . . . 10 (𝜑 → (𝑈↑3) = (𝑈 · (𝑈↑2)))
9594oveq2d 7271 . . . . . . . . 9 (𝜑 → (𝐹 · (𝑈↑3)) = (𝐹 · (𝑈 · (𝑈↑2))))
9637simp3d 1142 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℝ+)
9796rpcnd 12703 . . . . . . . . . 10 (𝜑𝐹 ∈ ℂ)
9897, 59, 77mulassd 10929 . . . . . . . . 9 (𝜑 → ((𝐹 · 𝑈) · (𝑈↑2)) = (𝐹 · (𝑈 · (𝑈↑2))))
99 1cnd 10901 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
10069rpreccld 12711 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 𝐷) ∈ ℝ+)
101100rpcnd 12703 . . . . . . . . . . . . . . 15 (𝜑 → (1 / 𝐷) ∈ ℂ)
10299, 101, 59subdird 11362 . . . . . . . . . . . . . 14 (𝜑 → ((1 − (1 / 𝐷)) · 𝑈) = ((1 · 𝑈) − ((1 / 𝐷) · 𝑈)))
10359mulid2d 10924 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝑈) = 𝑈)
10459, 70, 71divrec2d 11685 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈 / 𝐷) = ((1 / 𝐷) · 𝑈))
1059, 104eqtr2id 2792 . . . . . . . . . . . . . . 15 (𝜑 → ((1 / 𝐷) · 𝑈) = 𝐸)
106103, 105oveq12d 7273 . . . . . . . . . . . . . 14 (𝜑 → ((1 · 𝑈) − ((1 / 𝐷) · 𝑈)) = (𝑈𝐸))
107102, 106eqtr2d 2779 . . . . . . . . . . . . 13 (𝜑 → (𝑈𝐸) = ((1 − (1 / 𝐷)) · 𝑈))
108107oveq1d 7270 . . . . . . . . . . . 12 (𝜑 → ((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))))
1096oveq1i 7265 . . . . . . . . . . . . 13 (𝐹 · 𝑈) = (((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · 𝑈)
11099, 101subcld 11262 . . . . . . . . . . . . . 14 (𝜑 → (1 − (1 / 𝐷)) ∈ ℂ)
11175, 79rpdivcld 12718 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+)
112111rpcnd 12703 . . . . . . . . . . . . . 14 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℂ)
113110, 112, 59mul32d 11115 . . . . . . . . . . . . 13 (𝜑 → (((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · 𝑈) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))))
114109, 113syl5eq 2791 . . . . . . . . . . . 12 (𝜑 → (𝐹 · 𝑈) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))))
115108, 114eqtr4d 2781 . . . . . . . . . . 11 (𝜑 → ((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) = (𝐹 · 𝑈))
116115oveq1d 7270 . . . . . . . . . 10 (𝜑 → (((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · (𝑈↑2)) = ((𝐹 · 𝑈) · (𝑈↑2)))
11735rpcnd 12703 . . . . . . . . . . 11 (𝜑 → (𝑈𝐸) ∈ ℂ)
118117, 112, 77mulassd 10929 . . . . . . . . . 10 (𝜑 → (((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · (𝑈↑2)) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
119116, 118eqtr3d 2780 . . . . . . . . 9 (𝜑 → ((𝐹 · 𝑈) · (𝑈↑2)) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
12095, 98, 1193eqtr2d 2784 . . . . . . . 8 (𝜑 → (𝐹 · (𝑈↑3)) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
12186, 120eqtr4d 2781 . . . . . . 7 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) = (𝐹 · (𝑈↑3)))
122121oveq2d 7271 . . . . . 6 (𝜑 → (𝑈 − ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵)))) = (𝑈 − (𝐹 · (𝑈↑3))))
123122oveq1d 7270 . . . . 5 (𝜑 → ((𝑈 − ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵)))) · (log‘𝑍)) = ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
12462, 123eqtr3d 2780 . . . 4 (𝜑 → ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) = ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
12526, 24remulcld 10936 . . . . 5 (𝜑 → (𝑈 · (log‘𝑍)) ∈ ℝ)
126125, 54resubcld 11333 . . . 4 (𝜑 → ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ∈ ℝ)
127124, 126eqeltrrd 2840 . . 3 (𝜑 → ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)) ∈ ℝ)
12817rpred 12701 . . . . . . . 8 (𝜑𝑍 ∈ ℝ)
12916simp2d 1141 . . . . . . . . 9 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
130129simp1d 1140 . . . . . . . 8 (𝜑 → 1 < 𝑍)
131128, 130rplogcld 25689 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ+)
13232, 131rerpdivcld 12732 . . . . . 6 (𝜑 → (2 / (log‘𝑍)) ∈ ℝ)
133 fzfid 13621 . . . . . . 7 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
13417adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℝ+)
135 elfznn 13214 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
136135adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
137136nnrpd 12699 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
138134, 137rpdivcld 12718 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 / 𝑛) ∈ ℝ+)
13918ffvelrni 6942 . . . . . . . . . . . 12 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
140138, 139syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
141140, 134rerpdivcld 12732 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
142141recnd 10934 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
143142abscld 15076 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
144137relogcld 25683 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
145143, 144remulcld 10936 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ)
146133, 145fsumrecl 15374 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ)
147132, 146remulcld 10936 . . . . 5 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ)
148147, 57readdcld 10935 . . . 4 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶) ∈ ℝ)
14920recnd 10934 . . . . . . . . . . 11 (𝜑 → (𝑅𝑍) ∈ ℂ)
150149abscld 15076 . . . . . . . . . 10 (𝜑 → (abs‘(𝑅𝑍)) ∈ ℝ)
151150recnd 10934 . . . . . . . . 9 (𝜑 → (abs‘(𝑅𝑍)) ∈ ℂ)
152151, 61mulcld 10926 . . . . . . . 8 (𝜑 → ((abs‘(𝑅𝑍)) · (log‘𝑍)) ∈ ℂ)
153132recnd 10934 . . . . . . . . 9 (𝜑 → (2 / (log‘𝑍)) ∈ ℂ)
154140recnd 10934 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℂ)
155154abscld 15076 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℝ)
156155, 144remulcld 10936 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
157133, 156fsumrecl 15374 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
158157recnd 10934 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
159153, 158mulcld 10926 . . . . . . . 8 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
16017rpcnd 12703 . . . . . . . 8 (𝜑𝑍 ∈ ℂ)
16117rpne0d 12706 . . . . . . . 8 (𝜑𝑍 ≠ 0)
162152, 159, 160, 161divsubdird 11720 . . . . . . 7 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) = ((((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) − (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍)))
163151, 61, 160, 161div23d 11718 . . . . . . . . 9 (𝜑 → (((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) = (((abs‘(𝑅𝑍)) / 𝑍) · (log‘𝑍)))
164149, 160, 161absdivd 15095 . . . . . . . . . . 11 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) = ((abs‘(𝑅𝑍)) / (abs‘𝑍)))
16517rprege0d 12708 . . . . . . . . . . . . 13 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
166 absid 14936 . . . . . . . . . . . . 13 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → (abs‘𝑍) = 𝑍)
167165, 166syl 17 . . . . . . . . . . . 12 (𝜑 → (abs‘𝑍) = 𝑍)
168167oveq2d 7271 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝑅𝑍)) / (abs‘𝑍)) = ((abs‘(𝑅𝑍)) / 𝑍))
169164, 168eqtrd 2778 . . . . . . . . . 10 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) = ((abs‘(𝑅𝑍)) / 𝑍))
170169oveq1d 7270 . . . . . . . . 9 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) = (((abs‘(𝑅𝑍)) / 𝑍) · (log‘𝑍)))
171163, 170eqtr4d 2781 . . . . . . . 8 (𝜑 → (((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) = ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)))
172153, 158, 160, 161divassd 11716 . . . . . . . . 9 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍) = ((2 / (log‘𝑍)) · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍)))
173160adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℂ)
174161adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ≠ 0)
175154, 173, 174absdivd 15095 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / (abs‘𝑍)))
176167adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘𝑍) = 𝑍)
177176oveq2d 7271 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) / (abs‘𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍))
178175, 177eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍))
179178oveq1d 7270 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛)))
180155recnd 10934 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℂ)
181144recnd 10934 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℂ)
18217rpcnne0d 12710 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
183182adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
184 div23 11582 . . . . . . . . . . . . . 14 (((abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛)))
185180, 181, 183, 184syl3anc 1369 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛)))
186179, 185eqtr4d 2781 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
187186sumeq2dv 15343 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
188156recnd 10934 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
189133, 160, 188, 161fsumdivc 15426 . . . . . . . . . . 11 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
190187, 189eqtr4d 2781 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
191190oveq2d 7271 . . . . . . . . 9 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) = ((2 / (log‘𝑍)) · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍)))
192172, 191eqtr4d 2781 . . . . . . . 8 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
193171, 192oveq12d 7273 . . . . . . 7 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) − (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍)) = (((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
194162, 193eqtrd 2778 . . . . . 6 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) = (((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
195 2fveq3 6761 . . . . . . . . . . 11 (𝑧 = 𝑍 → (abs‘(𝑅𝑧)) = (abs‘(𝑅𝑍)))
196 fveq2 6756 . . . . . . . . . . 11 (𝑧 = 𝑍 → (log‘𝑧) = (log‘𝑍))
197195, 196oveq12d 7273 . . . . . . . . . 10 (𝑧 = 𝑍 → ((abs‘(𝑅𝑧)) · (log‘𝑧)) = ((abs‘(𝑅𝑍)) · (log‘𝑍)))
198196oveq2d 7271 . . . . . . . . . . 11 (𝑧 = 𝑍 → (2 / (log‘𝑧)) = (2 / (log‘𝑍)))
199 oveq2 7263 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝑧 / 𝑖) = (𝑧 / 𝑛))
200199fveq2d 6760 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (𝑅‘(𝑧 / 𝑖)) = (𝑅‘(𝑧 / 𝑛)))
201200fveq2d 6760 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (abs‘(𝑅‘(𝑧 / 𝑖))) = (abs‘(𝑅‘(𝑧 / 𝑛))))
202 fveq2 6756 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (log‘𝑖) = (log‘𝑛))
203201, 202oveq12d 7273 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → ((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = ((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))
204203cbvsumv 15336 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛))
205 fvoveq1 7278 . . . . . . . . . . . . . 14 (𝑧 = 𝑍 → (⌊‘(𝑧 / 𝑌)) = (⌊‘(𝑍 / 𝑌)))
206205oveq2d 7271 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → (1...(⌊‘(𝑧 / 𝑌))) = (1...(⌊‘(𝑍 / 𝑌))))
207 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑧 = 𝑍)
208207fvoveq1d 7277 . . . . . . . . . . . . . . 15 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑧 / 𝑛)) = (𝑅‘(𝑍 / 𝑛)))
209208fveq2d 6760 . . . . . . . . . . . . . 14 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑧 / 𝑛))) = (abs‘(𝑅‘(𝑍 / 𝑛))))
210209oveq1d 7270 . . . . . . . . . . . . 13 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))
211206, 210sumeq12rdv 15347 . . . . . . . . . . . 12 (𝑧 = 𝑍 → Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))
212204, 211syl5eq 2791 . . . . . . . . . . 11 (𝑧 = 𝑍 → Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))
213198, 212oveq12d 7273 . . . . . . . . . 10 (𝑧 = 𝑍 → ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖))) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))))
214197, 213oveq12d 7273 . . . . . . . . 9 (𝑧 = 𝑍 → (((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) = (((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))))
215 id 22 . . . . . . . . 9 (𝑧 = 𝑍𝑧 = 𝑍)
216214, 215oveq12d 7273 . . . . . . . 8 (𝑧 = 𝑍 → ((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) = ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍))
217216breq1d 5080 . . . . . . 7 (𝑧 = 𝑍 → (((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶 ↔ ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) ≤ 𝐶))
218 pntlem1.C . . . . . . 7 (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
219 1re 10906 . . . . . . . . 9 1 ∈ ℝ
220 rexr 10952 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ ℝ*)
221 elioopnf 13104 . . . . . . . . 9 (1 ∈ ℝ* → (𝑍 ∈ (1(,)+∞) ↔ (𝑍 ∈ ℝ ∧ 1 < 𝑍)))
222219, 220, 221mp2b 10 . . . . . . . 8 (𝑍 ∈ (1(,)+∞) ↔ (𝑍 ∈ ℝ ∧ 1 < 𝑍))
223128, 130, 222sylanbrc 582 . . . . . . 7 (𝜑𝑍 ∈ (1(,)+∞))
224217, 218, 223rspcdva 3554 . . . . . 6 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) ≤ 𝐶)
225194, 224eqbrtrrd 5094 . . . . 5 (𝜑 → (((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ 𝐶)
22625, 147, 57lesubadd2d 11504 . . . . 5 (𝜑 → ((((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ 𝐶 ↔ ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶)))
227225, 226mpbid 231 . . . 4 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶))
228 2cnd 11981 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
229143recnd 10934 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℂ)
230229, 181mulcld 10926 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℂ)
231133, 230fsumcl 15373 . . . . . . 7 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℂ)
232131rpne0d 12706 . . . . . . 7 (𝜑 → (log‘𝑍) ≠ 0)
233228, 231, 61, 232div23d 11718 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
23424resqcld 13893 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ)
23552, 234remulcld 10936 . . . . . . . . . . 11 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ)
23636, 235remulcld 10936 . . . . . . . . . 10 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ)
237 remulcl 10887 . . . . . . . . . 10 ((2 ∈ ℝ ∧ ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ) → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ∈ ℝ)
23831, 236, 237sylancr 586 . . . . . . . . 9 (𝜑 → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ∈ ℝ)
23930, 24remulcld 10936 . . . . . . . . 9 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) ∈ ℝ)
240 remulcl 10887 . . . . . . . . . 10 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ)
24131, 146, 240sylancr 586 . . . . . . . . 9 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ)
24226adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℝ)
243242, 136nndivred 11957 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℝ)
244243, 143resubcld 11333 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
245244, 144remulcld 10936 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
246133, 245fsumrecl 15374 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
24732, 246remulcld 10936 . . . . . . . . . 10 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ∈ ℝ)
248239, 241resubcld 11333 . . . . . . . . . 10 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ∈ ℝ)
249 pntlem1.m . . . . . . . . . . . 12 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
250 pntlem1.n . . . . . . . . . . . 12 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
251 pntlem1.U . . . . . . . . . . . 12 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
252 pntlem1.K . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
2531, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 249, 250, 251, 252pntlemf 26658 . . . . . . . . . . 11 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
254 2pos 12006 . . . . . . . . . . . . 13 0 < 2
255254a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 2)
256 lemul2 11758 . . . . . . . . . . . 12 ((((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
257236, 246, 32, 255, 256syl112anc 1372 . . . . . . . . . . 11 (𝜑 → (((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
258253, 257mpbid 231 . . . . . . . . . 10 (𝜑 → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
259243recnd 10934 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℂ)
260259, 229, 181subdird 11362 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
261260sumeq2dv 15343 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
262243, 144remulcld 10936 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ)
263262recnd 10934 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℂ)
264133, 263, 230fsumsub 15428 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
265261, 264eqtrd 2778 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
266265oveq2d 7271 . . . . . . . . . . . 12 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) = (2 · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
267133, 262fsumrecl 15374 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ)
268267recnd 10934 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℂ)
269228, 268, 231subdid 11361 . . . . . . . . . . . 12 (𝜑 → (2 · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) = ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
270266, 269eqtrd 2778 . . . . . . . . . . 11 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) = ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
271 remulcl 10887 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ∈ ℝ)
27231, 267, 271sylancr 586 . . . . . . . . . . . 12 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ∈ ℝ)
2731, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 249, 250, 251, 252pntlemk 26659 . . . . . . . . . . . 12 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
274272, 239, 241, 273lesub1dd 11521 . . . . . . . . . . 11 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
275270, 274eqbrtrd 5092 . . . . . . . . . 10 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
276238, 247, 248, 258, 275letrd 11062 . . . . . . . . 9 (𝜑 → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
277238, 239, 241, 276lesubd 11509 . . . . . . . 8 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))))
27830recnd 10934 . . . . . . . . . 10 (𝜑 → (𝑈 · ((log‘𝑍) + 3)) ∈ ℂ)
27955recnd 10934 . . . . . . . . . 10 (𝜑 → (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ∈ ℂ)
280278, 279, 61subdird 11362 . . . . . . . . 9 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍))))
28154recnd 10934 . . . . . . . . . . . 12 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) ∈ ℂ)
282228, 281, 61mulassd 10929 . . . . . . . . . . 11 (𝜑 → ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍)) = (2 · ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍))))
28360, 61, 61mulassd 10929 . . . . . . . . . . . . 13 (𝜑 → ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍)) = (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍) · (log‘𝑍))))
28461sqvald 13789 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
285284oveq2d 7271 . . . . . . . . . . . . 13 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍)↑2)) = (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍) · (log‘𝑍))))
28651rpcnd 12703 . . . . . . . . . . . . . 14 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℂ)
287234recnd 10934 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍)↑2) ∈ ℂ)
288117, 286, 287mulassd 10929 . . . . . . . . . . . . 13 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍)↑2)) = ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))
289283, 285, 2883eqtr2d 2784 . . . . . . . . . . . 12 (𝜑 → ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍)) = ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))
290289oveq2d 7271 . . . . . . . . . . 11 (𝜑 → (2 · ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍))) = (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))))
291282, 290eqtrd 2778 . . . . . . . . . 10 (𝜑 → ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍)) = (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))))
292291oveq2d 7271 . . . . . . . . 9 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍))) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))))
293280, 292eqtrd 2778 . . . . . . . 8 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))))
294277, 293breqtrrd 5098 . . . . . . 7 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)))
295241, 56, 131ledivmul2d 12755 . . . . . . 7 (𝜑 → (((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ↔ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍))))
296294, 295mpbird 256 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
297233, 296eqbrtrrd 5094 . . . . 5 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
298147, 56, 57, 297leadd1dd 11519 . . . 4 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶))
29925, 148, 58, 227, 298letrd 11062 . . 3 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶))
300 remulcl 10887 . . . . . . . . 9 ((𝑈 ∈ ℝ ∧ 3 ∈ ℝ) → (𝑈 · 3) ∈ ℝ)
30126, 27, 300sylancl 585 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℝ)
302301, 57readdcld 10935 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ)
30316simp3d 1142 . . . . . . . 8 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
304303simp3d 1142 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))
305302, 54, 125, 304leadd2dd 11520 . . . . . 6 (𝜑 → ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)) ≤ ((𝑈 · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
30628recnd 10934 . . . . . . . . 9 (𝜑 → 3 ∈ ℂ)
30759, 61, 306adddid 10930 . . . . . . . 8 (𝜑 → (𝑈 · ((log‘𝑍) + 3)) = ((𝑈 · (log‘𝑍)) + (𝑈 · 3)))
308307oveq1d 7270 . . . . . . 7 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) = (((𝑈 · (log‘𝑍)) + (𝑈 · 3)) + 𝐶))
309125recnd 10934 . . . . . . . 8 (𝜑 → (𝑈 · (log‘𝑍)) ∈ ℂ)
31059, 306mulcld 10926 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℂ)
31113rpcnd 12703 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
312309, 310, 311addassd 10928 . . . . . . 7 (𝜑 → (((𝑈 · (log‘𝑍)) + (𝑈 · 3)) + 𝐶) = ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)))
313308, 312eqtrd 2778 . . . . . 6 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) = ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)))
3142812timesd 12146 . . . . . . . 8 (𝜑 → (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) = ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
315314oveq2d 7271 . . . . . . 7 (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
316309, 281, 281nppcan3d 11289 . . . . . . 7 (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = ((𝑈 · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
317315, 316eqtrd 2778 . . . . . 6 (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = ((𝑈 · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
318305, 313, 3173brtr4d 5102 . . . . 5 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ≤ (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
31930, 57readdcld 10935 . . . . . 6 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ∈ ℝ)
320319, 55, 126lesubaddd 11502 . . . . 5 (𝜑 → ((((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ≤ ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ↔ ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ≤ (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))))
321318, 320mpbird 256 . . . 4 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ≤ ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
322278, 311, 279addsubd 11283 . . . 4 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶))
323321, 322, 1243brtr3d 5101 . . 3 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
32425, 58, 127, 299, 323letrd 11062 . 2 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
325 3z 12283 . . . . . . 7 3 ∈ ℤ
326 rpexpcl 13729 . . . . . . 7 ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℤ) → (𝑈↑3) ∈ ℝ+)
3277, 325, 326sylancl 585 . . . . . 6 (𝜑 → (𝑈↑3) ∈ ℝ+)
32896, 327rpmulcld 12717 . . . . 5 (𝜑 → (𝐹 · (𝑈↑3)) ∈ ℝ+)
329328rpred 12701 . . . 4 (𝜑 → (𝐹 · (𝑈↑3)) ∈ ℝ)
33026, 329resubcld 11333 . . 3 (𝜑 → (𝑈 − (𝐹 · (𝑈↑3))) ∈ ℝ)
33123, 330, 131lemul1d 12744 . 2 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))) ↔ ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍))))
332324, 331mpbird 256 1 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  4c4 11960  0cn0 12163  cz 12249  cdc 12366  +crp 12659  (,)cioo 13008  [,)cico 13010  [,]cicc 13011  ...cfz 13168  cfl 13438  cexp 13710  csqrt 14872  abscabs 14873  Σcsu 15325  expce 15699  eceu 15700  logclog 25615  ψcchp 26147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-ulm 25441  df-log 25617  df-atan 25922  df-em 26047  df-vma 26152  df-chp 26153
This theorem is referenced by:  pntleme  26661
  Copyright terms: Public domain W3C validator