MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pntlemo Structured version   Visualization version   GIF version

Theorem pntlemo 26951
Description: Lemma for pnt 26958. Combine all the estimates to establish a smaller eventual bound on 𝑅(𝑍) / 𝑍. (Contributed by Mario Carneiro, 14-Apr-2016.)
Hypotheses
Ref Expression
pntlem1.r 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
pntlem1.a (𝜑𝐴 ∈ ℝ+)
pntlem1.b (𝜑𝐵 ∈ ℝ+)
pntlem1.l (𝜑𝐿 ∈ (0(,)1))
pntlem1.d 𝐷 = (𝐴 + 1)
pntlem1.f 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
pntlem1.u (𝜑𝑈 ∈ ℝ+)
pntlem1.u2 (𝜑𝑈𝐴)
pntlem1.e 𝐸 = (𝑈 / 𝐷)
pntlem1.k 𝐾 = (exp‘(𝐵 / 𝐸))
pntlem1.y (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
pntlem1.x (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
pntlem1.c (𝜑𝐶 ∈ ℝ+)
pntlem1.w 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
pntlem1.z (𝜑𝑍 ∈ (𝑊[,)+∞))
pntlem1.m 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
pntlem1.n 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
pntlem1.U (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
pntlem1.K (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
pntlem1.C (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
Assertion
Ref Expression
pntlemo (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Distinct variable groups:   𝑧,𝐶   𝑦,𝑧,𝑢,𝐿   𝑦,𝐾,𝑧   𝑧,𝑀   𝑧,𝑁   𝑢,𝑖,𝑦,𝑧,𝑅   𝑧,𝑈   𝑧,𝑊   𝑦,𝑋,𝑧   𝑖,𝑌,𝑧   𝑢,𝑎,𝑦,𝑧,𝐸   𝑢,𝑍,𝑧
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐴(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐵(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐶(𝑦,𝑢,𝑖,𝑎)   𝐷(𝑦,𝑧,𝑢,𝑖,𝑎)   𝑅(𝑎)   𝑈(𝑦,𝑢,𝑖,𝑎)   𝐸(𝑖)   𝐹(𝑦,𝑧,𝑢,𝑖,𝑎)   𝐾(𝑢,𝑖,𝑎)   𝐿(𝑖,𝑎)   𝑀(𝑦,𝑢,𝑖,𝑎)   𝑁(𝑦,𝑢,𝑖,𝑎)   𝑊(𝑦,𝑢,𝑖,𝑎)   𝑋(𝑢,𝑖,𝑎)   𝑌(𝑦,𝑢,𝑎)   𝑍(𝑦,𝑖,𝑎)

Proof of Theorem pntlemo
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 pntlem1.r . . . . . . . . . 10 𝑅 = (𝑎 ∈ ℝ+ ↦ ((ψ‘𝑎) − 𝑎))
2 pntlem1.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ+)
3 pntlem1.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ+)
4 pntlem1.l . . . . . . . . . 10 (𝜑𝐿 ∈ (0(,)1))
5 pntlem1.d . . . . . . . . . 10 𝐷 = (𝐴 + 1)
6 pntlem1.f . . . . . . . . . 10 𝐹 = ((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2)))
7 pntlem1.u . . . . . . . . . 10 (𝜑𝑈 ∈ ℝ+)
8 pntlem1.u2 . . . . . . . . . 10 (𝜑𝑈𝐴)
9 pntlem1.e . . . . . . . . . 10 𝐸 = (𝑈 / 𝐷)
10 pntlem1.k . . . . . . . . . 10 𝐾 = (exp‘(𝐵 / 𝐸))
11 pntlem1.y . . . . . . . . . 10 (𝜑 → (𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌))
12 pntlem1.x . . . . . . . . . 10 (𝜑 → (𝑋 ∈ ℝ+𝑌 < 𝑋))
13 pntlem1.c . . . . . . . . . 10 (𝜑𝐶 ∈ ℝ+)
14 pntlem1.w . . . . . . . . . 10 𝑊 = (((𝑌 + (4 / (𝐿 · 𝐸)))↑2) + (((𝑋 · (𝐾↑2))↑4) + (exp‘(((32 · 𝐵) / ((𝑈𝐸) · (𝐿 · (𝐸↑2)))) · ((𝑈 · 3) + 𝐶)))))
15 pntlem1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝑊[,)+∞))
161, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15pntlemb 26941 . . . . . . . . 9 (𝜑 → (𝑍 ∈ ℝ+ ∧ (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)) ∧ ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
1716simp1d 1142 . . . . . . . 8 (𝜑𝑍 ∈ ℝ+)
181pntrf 26907 . . . . . . . . 9 𝑅:ℝ+⟶ℝ
1918ffvelcdmi 7031 . . . . . . . 8 (𝑍 ∈ ℝ+ → (𝑅𝑍) ∈ ℝ)
2017, 19syl 17 . . . . . . 7 (𝜑 → (𝑅𝑍) ∈ ℝ)
2120, 17rerpdivcld 12985 . . . . . 6 (𝜑 → ((𝑅𝑍) / 𝑍) ∈ ℝ)
2221recnd 11180 . . . . 5 (𝜑 → ((𝑅𝑍) / 𝑍) ∈ ℂ)
2322abscld 15318 . . . 4 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ∈ ℝ)
2417relogcld 25974 . . . 4 (𝜑 → (log‘𝑍) ∈ ℝ)
2523, 24remulcld 11182 . . 3 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ∈ ℝ)
267rpred 12954 . . . . . 6 (𝜑𝑈 ∈ ℝ)
27 3re 12230 . . . . . . . 8 3 ∈ ℝ
2827a1i 11 . . . . . . 7 (𝜑 → 3 ∈ ℝ)
2924, 28readdcld 11181 . . . . . 6 (𝜑 → ((log‘𝑍) + 3) ∈ ℝ)
3026, 29remulcld 11182 . . . . 5 (𝜑 → (𝑈 · ((log‘𝑍) + 3)) ∈ ℝ)
31 2re 12224 . . . . . . 7 2 ∈ ℝ
3231a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℝ)
331, 2, 3, 4, 5, 6, 7, 8, 9, 10pntlemc 26939 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℝ+𝐾 ∈ ℝ+ ∧ (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+)))
3433simp3d 1144 . . . . . . . . . 10 (𝜑 → (𝐸 ∈ (0(,)1) ∧ 1 < 𝐾 ∧ (𝑈𝐸) ∈ ℝ+))
3534simp3d 1144 . . . . . . . . 9 (𝜑 → (𝑈𝐸) ∈ ℝ+)
3635rpred 12954 . . . . . . . 8 (𝜑 → (𝑈𝐸) ∈ ℝ)
371, 2, 3, 4, 5, 6pntlemd 26938 . . . . . . . . . . . 12 (𝜑 → (𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+))
3837simp1d 1142 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ+)
3933simp1d 1142 . . . . . . . . . . . 12 (𝜑𝐸 ∈ ℝ+)
40 2z 12532 . . . . . . . . . . . 12 2 ∈ ℤ
41 rpexpcl 13983 . . . . . . . . . . . 12 ((𝐸 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐸↑2) ∈ ℝ+)
4239, 40, 41sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℝ+)
4338, 42rpmulcld 12970 . . . . . . . . . 10 (𝜑 → (𝐿 · (𝐸↑2)) ∈ ℝ+)
44 3nn0 12428 . . . . . . . . . . . . 13 3 ∈ ℕ0
45 2nn 12223 . . . . . . . . . . . . 13 2 ∈ ℕ
4644, 45decnncl 12635 . . . . . . . . . . . 12 32 ∈ ℕ
47 nnrp 12923 . . . . . . . . . . . 12 (32 ∈ ℕ → 32 ∈ ℝ+)
4846, 47ax-mp 5 . . . . . . . . . . 11 32 ∈ ℝ+
49 rpmulcl 12935 . . . . . . . . . . 11 ((32 ∈ ℝ+𝐵 ∈ ℝ+) → (32 · 𝐵) ∈ ℝ+)
5048, 3, 49sylancr 587 . . . . . . . . . 10 (𝜑 → (32 · 𝐵) ∈ ℝ+)
5143, 50rpdivcld 12971 . . . . . . . . 9 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℝ+)
5251rpred 12954 . . . . . . . 8 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℝ)
5336, 52remulcld 11182 . . . . . . 7 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) ∈ ℝ)
5453, 24remulcld 11182 . . . . . 6 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) ∈ ℝ)
5532, 54remulcld 11182 . . . . 5 (𝜑 → (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ∈ ℝ)
5630, 55resubcld 11580 . . . 4 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ∈ ℝ)
5713rpred 12954 . . . 4 (𝜑𝐶 ∈ ℝ)
5856, 57readdcld 11181 . . 3 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶) ∈ ℝ)
597rpcnd 12956 . . . . . 6 (𝜑𝑈 ∈ ℂ)
6053recnd 11180 . . . . . 6 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) ∈ ℂ)
6124recnd 11180 . . . . . 6 (𝜑 → (log‘𝑍) ∈ ℂ)
6259, 60, 61subdird 11609 . . . . 5 (𝜑 → ((𝑈 − ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵)))) · (log‘𝑍)) = ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
6338rpcnd 12956 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℂ)
6442rpcnd 12956 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ∈ ℂ)
6550rpcnne0d 12963 . . . . . . . . . . 11 (𝜑 → ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0))
66 div23 11829 . . . . . . . . . . 11 ((𝐿 ∈ ℂ ∧ (𝐸↑2) ∈ ℂ ∧ ((32 · 𝐵) ∈ ℂ ∧ (32 · 𝐵) ≠ 0)) → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) = ((𝐿 / (32 · 𝐵)) · (𝐸↑2)))
6763, 64, 65, 66syl3anc 1371 . . . . . . . . . 10 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) = ((𝐿 / (32 · 𝐵)) · (𝐸↑2)))
689oveq1i 7364 . . . . . . . . . . . 12 (𝐸↑2) = ((𝑈 / 𝐷)↑2)
6937simp2d 1143 . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ ℝ+)
7069rpcnd 12956 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ ℂ)
7169rpne0d 12959 . . . . . . . . . . . . 13 (𝜑𝐷 ≠ 0)
7259, 70, 71sqdivd 14061 . . . . . . . . . . . 12 (𝜑 → ((𝑈 / 𝐷)↑2) = ((𝑈↑2) / (𝐷↑2)))
7368, 72eqtrid 2788 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) = ((𝑈↑2) / (𝐷↑2)))
7473oveq2d 7370 . . . . . . . . . 10 (𝜑 → ((𝐿 / (32 · 𝐵)) · (𝐸↑2)) = ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))))
7538, 50rpdivcld 12971 . . . . . . . . . . . 12 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℝ+)
7675rpcnd 12956 . . . . . . . . . . 11 (𝜑 → (𝐿 / (32 · 𝐵)) ∈ ℂ)
7759sqcld 14046 . . . . . . . . . . 11 (𝜑 → (𝑈↑2) ∈ ℂ)
78 rpexpcl 13983 . . . . . . . . . . . . 13 ((𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝐷↑2) ∈ ℝ+)
7969, 40, 78sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝐷↑2) ∈ ℝ+)
8079rpcnne0d 12963 . . . . . . . . . . 11 (𝜑 → ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0))
81 divass 11828 . . . . . . . . . . . 12 (((𝐿 / (32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0)) → (((𝐿 / (32 · 𝐵)) · (𝑈↑2)) / (𝐷↑2)) = ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))))
82 div23 11829 . . . . . . . . . . . 12 (((𝐿 / (32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0)) → (((𝐿 / (32 · 𝐵)) · (𝑈↑2)) / (𝐷↑2)) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8381, 82eqtr3d 2778 . . . . . . . . . . 11 (((𝐿 / (32 · 𝐵)) ∈ ℂ ∧ (𝑈↑2) ∈ ℂ ∧ ((𝐷↑2) ∈ ℂ ∧ (𝐷↑2) ≠ 0)) → ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8476, 77, 80, 83syl3anc 1371 . . . . . . . . . 10 (𝜑 → ((𝐿 / (32 · 𝐵)) · ((𝑈↑2) / (𝐷↑2))) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8567, 74, 843eqtrd 2780 . . . . . . . . 9 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) = (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2)))
8685oveq2d 7370 . . . . . . . 8 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
87 df-3 12214 . . . . . . . . . . . . 13 3 = (2 + 1)
8887oveq2i 7365 . . . . . . . . . . . 12 (𝑈↑3) = (𝑈↑(2 + 1))
89 2nn0 12427 . . . . . . . . . . . . 13 2 ∈ ℕ0
90 expp1 13971 . . . . . . . . . . . . 13 ((𝑈 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝑈↑(2 + 1)) = ((𝑈↑2) · 𝑈))
9159, 89, 90sylancl 586 . . . . . . . . . . . 12 (𝜑 → (𝑈↑(2 + 1)) = ((𝑈↑2) · 𝑈))
9288, 91eqtrid 2788 . . . . . . . . . . 11 (𝜑 → (𝑈↑3) = ((𝑈↑2) · 𝑈))
9377, 59mulcomd 11173 . . . . . . . . . . 11 (𝜑 → ((𝑈↑2) · 𝑈) = (𝑈 · (𝑈↑2)))
9492, 93eqtrd 2776 . . . . . . . . . 10 (𝜑 → (𝑈↑3) = (𝑈 · (𝑈↑2)))
9594oveq2d 7370 . . . . . . . . 9 (𝜑 → (𝐹 · (𝑈↑3)) = (𝐹 · (𝑈 · (𝑈↑2))))
9637simp3d 1144 . . . . . . . . . . 11 (𝜑𝐹 ∈ ℝ+)
9796rpcnd 12956 . . . . . . . . . 10 (𝜑𝐹 ∈ ℂ)
9897, 59, 77mulassd 11175 . . . . . . . . 9 (𝜑 → ((𝐹 · 𝑈) · (𝑈↑2)) = (𝐹 · (𝑈 · (𝑈↑2))))
99 1cnd 11147 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℂ)
10069rpreccld 12964 . . . . . . . . . . . . . . . 16 (𝜑 → (1 / 𝐷) ∈ ℝ+)
101100rpcnd 12956 . . . . . . . . . . . . . . 15 (𝜑 → (1 / 𝐷) ∈ ℂ)
10299, 101, 59subdird 11609 . . . . . . . . . . . . . 14 (𝜑 → ((1 − (1 / 𝐷)) · 𝑈) = ((1 · 𝑈) − ((1 / 𝐷) · 𝑈)))
10359mulid2d 11170 . . . . . . . . . . . . . . 15 (𝜑 → (1 · 𝑈) = 𝑈)
10459, 70, 71divrec2d 11932 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑈 / 𝐷) = ((1 / 𝐷) · 𝑈))
1059, 104eqtr2id 2789 . . . . . . . . . . . . . . 15 (𝜑 → ((1 / 𝐷) · 𝑈) = 𝐸)
106103, 105oveq12d 7372 . . . . . . . . . . . . . 14 (𝜑 → ((1 · 𝑈) − ((1 / 𝐷) · 𝑈)) = (𝑈𝐸))
107102, 106eqtr2d 2777 . . . . . . . . . . . . 13 (𝜑 → (𝑈𝐸) = ((1 − (1 / 𝐷)) · 𝑈))
108107oveq1d 7369 . . . . . . . . . . . 12 (𝜑 → ((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))))
1096oveq1i 7364 . . . . . . . . . . . . 13 (𝐹 · 𝑈) = (((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · 𝑈)
11099, 101subcld 11509 . . . . . . . . . . . . . 14 (𝜑 → (1 − (1 / 𝐷)) ∈ ℂ)
11175, 79rpdivcld 12971 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℝ+)
112111rpcnd 12956 . . . . . . . . . . . . . 14 (𝜑 → ((𝐿 / (32 · 𝐵)) / (𝐷↑2)) ∈ ℂ)
113110, 112, 59mul32d 11362 . . . . . . . . . . . . 13 (𝜑 → (((1 − (1 / 𝐷)) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · 𝑈) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))))
114109, 113eqtrid 2788 . . . . . . . . . . . 12 (𝜑 → (𝐹 · 𝑈) = (((1 − (1 / 𝐷)) · 𝑈) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))))
115108, 114eqtr4d 2779 . . . . . . . . . . 11 (𝜑 → ((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) = (𝐹 · 𝑈))
116115oveq1d 7369 . . . . . . . . . 10 (𝜑 → (((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · (𝑈↑2)) = ((𝐹 · 𝑈) · (𝑈↑2)))
11735rpcnd 12956 . . . . . . . . . . 11 (𝜑 → (𝑈𝐸) ∈ ℂ)
118117, 112, 77mulassd 11175 . . . . . . . . . 10 (𝜑 → (((𝑈𝐸) · ((𝐿 / (32 · 𝐵)) / (𝐷↑2))) · (𝑈↑2)) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
119116, 118eqtr3d 2778 . . . . . . . . 9 (𝜑 → ((𝐹 · 𝑈) · (𝑈↑2)) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
12095, 98, 1193eqtr2d 2782 . . . . . . . 8 (𝜑 → (𝐹 · (𝑈↑3)) = ((𝑈𝐸) · (((𝐿 / (32 · 𝐵)) / (𝐷↑2)) · (𝑈↑2))))
12186, 120eqtr4d 2779 . . . . . . 7 (𝜑 → ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) = (𝐹 · (𝑈↑3)))
122121oveq2d 7370 . . . . . 6 (𝜑 → (𝑈 − ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵)))) = (𝑈 − (𝐹 · (𝑈↑3))))
123122oveq1d 7369 . . . . 5 (𝜑 → ((𝑈 − ((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵)))) · (log‘𝑍)) = ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
12462, 123eqtr3d 2778 . . . 4 (𝜑 → ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) = ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
12526, 24remulcld 11182 . . . . 5 (𝜑 → (𝑈 · (log‘𝑍)) ∈ ℝ)
126125, 54resubcld 11580 . . . 4 (𝜑 → ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ∈ ℝ)
127124, 126eqeltrrd 2839 . . 3 (𝜑 → ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)) ∈ ℝ)
12817rpred 12954 . . . . . . . 8 (𝜑𝑍 ∈ ℝ)
12916simp2d 1143 . . . . . . . . 9 (𝜑 → (1 < 𝑍 ∧ e ≤ (√‘𝑍) ∧ (√‘𝑍) ≤ (𝑍 / 𝑌)))
130129simp1d 1142 . . . . . . . 8 (𝜑 → 1 < 𝑍)
131128, 130rplogcld 25980 . . . . . . 7 (𝜑 → (log‘𝑍) ∈ ℝ+)
13232, 131rerpdivcld 12985 . . . . . 6 (𝜑 → (2 / (log‘𝑍)) ∈ ℝ)
133 fzfid 13875 . . . . . . 7 (𝜑 → (1...(⌊‘(𝑍 / 𝑌))) ∈ Fin)
13417adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℝ+)
135 elfznn 13467 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌))) → 𝑛 ∈ ℕ)
136135adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℕ)
137136nnrpd 12952 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑛 ∈ ℝ+)
138134, 137rpdivcld 12971 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 / 𝑛) ∈ ℝ+)
13918ffvelcdmi 7031 . . . . . . . . . . . 12 ((𝑍 / 𝑛) ∈ ℝ+ → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
140138, 139syl 17 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℝ)
141140, 134rerpdivcld 12985 . . . . . . . . . 10 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℝ)
142141recnd 11180 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑅‘(𝑍 / 𝑛)) / 𝑍) ∈ ℂ)
143142abscld 15318 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℝ)
144137relogcld 25974 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℝ)
145143, 144remulcld 11182 . . . . . . 7 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ)
146133, 145fsumrecl 15616 . . . . . 6 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ)
147132, 146remulcld 11182 . . . . 5 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ)
148147, 57readdcld 11181 . . . 4 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶) ∈ ℝ)
14920recnd 11180 . . . . . . . . . . 11 (𝜑 → (𝑅𝑍) ∈ ℂ)
150149abscld 15318 . . . . . . . . . 10 (𝜑 → (abs‘(𝑅𝑍)) ∈ ℝ)
151150recnd 11180 . . . . . . . . 9 (𝜑 → (abs‘(𝑅𝑍)) ∈ ℂ)
152151, 61mulcld 11172 . . . . . . . 8 (𝜑 → ((abs‘(𝑅𝑍)) · (log‘𝑍)) ∈ ℂ)
153132recnd 11180 . . . . . . . . 9 (𝜑 → (2 / (log‘𝑍)) ∈ ℂ)
154140recnd 11180 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑍 / 𝑛)) ∈ ℂ)
155154abscld 15318 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℝ)
156155, 144remulcld 11182 . . . . . . . . . . 11 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
157133, 156fsumrecl 15616 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℝ)
158157recnd 11180 . . . . . . . . 9 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
159153, 158mulcld 11172 . . . . . . . 8 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) ∈ ℂ)
16017rpcnd 12956 . . . . . . . 8 (𝜑𝑍 ∈ ℂ)
16117rpne0d 12959 . . . . . . . 8 (𝜑𝑍 ≠ 0)
162152, 159, 160, 161divsubdird 11967 . . . . . . 7 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) = ((((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) − (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍)))
163151, 61, 160, 161div23d 11965 . . . . . . . . 9 (𝜑 → (((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) = (((abs‘(𝑅𝑍)) / 𝑍) · (log‘𝑍)))
164149, 160, 161absdivd 15337 . . . . . . . . . . 11 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) = ((abs‘(𝑅𝑍)) / (abs‘𝑍)))
16517rprege0d 12961 . . . . . . . . . . . . 13 (𝜑 → (𝑍 ∈ ℝ ∧ 0 ≤ 𝑍))
166 absid 15178 . . . . . . . . . . . . 13 ((𝑍 ∈ ℝ ∧ 0 ≤ 𝑍) → (abs‘𝑍) = 𝑍)
167165, 166syl 17 . . . . . . . . . . . 12 (𝜑 → (abs‘𝑍) = 𝑍)
168167oveq2d 7370 . . . . . . . . . . 11 (𝜑 → ((abs‘(𝑅𝑍)) / (abs‘𝑍)) = ((abs‘(𝑅𝑍)) / 𝑍))
169164, 168eqtrd 2776 . . . . . . . . . 10 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) = ((abs‘(𝑅𝑍)) / 𝑍))
170169oveq1d 7369 . . . . . . . . 9 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) = (((abs‘(𝑅𝑍)) / 𝑍) · (log‘𝑍)))
171163, 170eqtr4d 2779 . . . . . . . 8 (𝜑 → (((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) = ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)))
172153, 158, 160, 161divassd 11963 . . . . . . . . 9 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍) = ((2 / (log‘𝑍)) · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍)))
173160adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ∈ ℂ)
174161adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑍 ≠ 0)
175154, 173, 174absdivd 15337 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / (abs‘𝑍)))
176167adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘𝑍) = 𝑍)
177176oveq2d 7370 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) / (abs‘𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍))
178175, 177eqtrd 2776 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍))
179178oveq1d 7369 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛)))
180155recnd 11180 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℂ)
181144recnd 11180 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (log‘𝑛) ∈ ℂ)
18217rpcnne0d 12963 . . . . . . . . . . . . . . 15 (𝜑 → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
183182adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0))
184 div23 11829 . . . . . . . . . . . . . 14 (((abs‘(𝑅‘(𝑍 / 𝑛))) ∈ ℂ ∧ (log‘𝑛) ∈ ℂ ∧ (𝑍 ∈ ℂ ∧ 𝑍 ≠ 0)) → (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛)))
185180, 181, 183, 184syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = (((abs‘(𝑅‘(𝑍 / 𝑛))) / 𝑍) · (log‘𝑛)))
186179, 185eqtr4d 2779 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
187186sumeq2dv 15585 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
188156recnd 11180 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) ∈ ℂ)
189133, 160, 188, 161fsumdivc 15668 . . . . . . . . . . 11 (𝜑 → (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
190187, 189eqtr4d 2779 . . . . . . . . . 10 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍))
191190oveq2d 7370 . . . . . . . . 9 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) = ((2 / (log‘𝑍)) · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)) / 𝑍)))
192172, 191eqtr4d 2779 . . . . . . . 8 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
193171, 192oveq12d 7372 . . . . . . 7 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) / 𝑍) − (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))) / 𝑍)) = (((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
194162, 193eqtrd 2776 . . . . . 6 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) = (((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
195 2fveq3 6845 . . . . . . . . . . 11 (𝑧 = 𝑍 → (abs‘(𝑅𝑧)) = (abs‘(𝑅𝑍)))
196 fveq2 6840 . . . . . . . . . . 11 (𝑧 = 𝑍 → (log‘𝑧) = (log‘𝑍))
197195, 196oveq12d 7372 . . . . . . . . . 10 (𝑧 = 𝑍 → ((abs‘(𝑅𝑧)) · (log‘𝑧)) = ((abs‘(𝑅𝑍)) · (log‘𝑍)))
198196oveq2d 7370 . . . . . . . . . . 11 (𝑧 = 𝑍 → (2 / (log‘𝑧)) = (2 / (log‘𝑍)))
199 oveq2 7362 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑛 → (𝑧 / 𝑖) = (𝑧 / 𝑛))
200199fveq2d 6844 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (𝑅‘(𝑧 / 𝑖)) = (𝑅‘(𝑧 / 𝑛)))
201200fveq2d 6844 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (abs‘(𝑅‘(𝑧 / 𝑖))) = (abs‘(𝑅‘(𝑧 / 𝑛))))
202 fveq2 6840 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → (log‘𝑖) = (log‘𝑛))
203201, 202oveq12d 7372 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → ((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = ((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)))
204203cbvsumv 15578 . . . . . . . . . . . 12 Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛))
205 fvoveq1 7377 . . . . . . . . . . . . . 14 (𝑧 = 𝑍 → (⌊‘(𝑧 / 𝑌)) = (⌊‘(𝑍 / 𝑌)))
206205oveq2d 7370 . . . . . . . . . . . . 13 (𝑧 = 𝑍 → (1...(⌊‘(𝑧 / 𝑌))) = (1...(⌊‘(𝑍 / 𝑌))))
207 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑧 = 𝑍)
208207fvoveq1d 7376 . . . . . . . . . . . . . . 15 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑅‘(𝑧 / 𝑛)) = (𝑅‘(𝑍 / 𝑛)))
209208fveq2d 6844 . . . . . . . . . . . . . 14 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘(𝑅‘(𝑧 / 𝑛))) = (abs‘(𝑅‘(𝑍 / 𝑛))))
210209oveq1d 7369 . . . . . . . . . . . . 13 ((𝑧 = 𝑍𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)) = ((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))
211206, 210sumeq12rdv 15589 . . . . . . . . . . . 12 (𝑧 = 𝑍 → Σ𝑛 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑛))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))
212204, 211eqtrid 2788 . . . . . . . . . . 11 (𝑧 = 𝑍 → Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))
213198, 212oveq12d 7372 . . . . . . . . . 10 (𝑧 = 𝑍 → ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖))) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛))))
214197, 213oveq12d 7372 . . . . . . . . 9 (𝑧 = 𝑍 → (((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) = (((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))))
215 id 22 . . . . . . . . 9 (𝑧 = 𝑍𝑧 = 𝑍)
216214, 215oveq12d 7372 . . . . . . . 8 (𝑧 = 𝑍 → ((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) = ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍))
217216breq1d 5114 . . . . . . 7 (𝑧 = 𝑍 → (((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶 ↔ ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) ≤ 𝐶))
218 pntlem1.C . . . . . . 7 (𝜑 → ∀𝑧 ∈ (1(,)+∞)((((abs‘(𝑅𝑧)) · (log‘𝑧)) − ((2 / (log‘𝑧)) · Σ𝑖 ∈ (1...(⌊‘(𝑧 / 𝑌)))((abs‘(𝑅‘(𝑧 / 𝑖))) · (log‘𝑖)))) / 𝑧) ≤ 𝐶)
219 1re 11152 . . . . . . . . 9 1 ∈ ℝ
220 rexr 11198 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ ℝ*)
221 elioopnf 13357 . . . . . . . . 9 (1 ∈ ℝ* → (𝑍 ∈ (1(,)+∞) ↔ (𝑍 ∈ ℝ ∧ 1 < 𝑍)))
222219, 220, 221mp2b 10 . . . . . . . 8 (𝑍 ∈ (1(,)+∞) ↔ (𝑍 ∈ ℝ ∧ 1 < 𝑍))
223128, 130, 222sylanbrc 583 . . . . . . 7 (𝜑𝑍 ∈ (1(,)+∞))
224217, 218, 223rspcdva 3581 . . . . . 6 (𝜑 → ((((abs‘(𝑅𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘(𝑅‘(𝑍 / 𝑛))) · (log‘𝑛)))) / 𝑍) ≤ 𝐶)
225194, 224eqbrtrrd 5128 . . . . 5 (𝜑 → (((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ 𝐶)
22625, 147, 57lesubadd2d 11751 . . . . 5 (𝜑 → ((((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) − ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ 𝐶 ↔ ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶)))
227225, 226mpbid 231 . . . 4 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶))
228 2cnd 12228 . . . . . . 7 (𝜑 → 2 ∈ ℂ)
229143recnd 11180 . . . . . . . . 9 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) ∈ ℂ)
230229, 181mulcld 11172 . . . . . . . 8 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℂ)
231133, 230fsumcl 15615 . . . . . . 7 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℂ)
232131rpne0d 12959 . . . . . . 7 (𝜑 → (log‘𝑍) ≠ 0)
233228, 231, 61, 232div23d 11965 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) = ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
23424resqcld 14027 . . . . . . . . . . . 12 (𝜑 → ((log‘𝑍)↑2) ∈ ℝ)
23552, 234remulcld 11182 . . . . . . . . . . 11 (𝜑 → (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)) ∈ ℝ)
23636, 235remulcld 11182 . . . . . . . . . 10 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ)
237 remulcl 11133 . . . . . . . . . 10 ((2 ∈ ℝ ∧ ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ) → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ∈ ℝ)
23831, 236, 237sylancr 587 . . . . . . . . 9 (𝜑 → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ∈ ℝ)
23930, 24remulcld 11182 . . . . . . . . 9 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) ∈ ℝ)
240 remulcl 11133 . . . . . . . . . 10 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ)
24131, 146, 240sylancr 587 . . . . . . . . 9 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ∈ ℝ)
24226adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → 𝑈 ∈ ℝ)
243242, 136nndivred 12204 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℝ)
244243, 143resubcld 11580 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) ∈ ℝ)
245244, 144remulcld 11182 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
246133, 245fsumrecl 15616 . . . . . . . . . . 11 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ)
24732, 246remulcld 11182 . . . . . . . . . 10 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ∈ ℝ)
248239, 241resubcld 11580 . . . . . . . . . 10 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ∈ ℝ)
249 pntlem1.m . . . . . . . . . . . 12 𝑀 = ((⌊‘((log‘𝑋) / (log‘𝐾))) + 1)
250 pntlem1.n . . . . . . . . . . . 12 𝑁 = (⌊‘(((log‘𝑍) / (log‘𝐾)) / 2))
251 pntlem1.U . . . . . . . . . . . 12 (𝜑 → ∀𝑧 ∈ (𝑌[,)+∞)(abs‘((𝑅𝑧) / 𝑧)) ≤ 𝑈)
252 pntlem1.K . . . . . . . . . . . 12 (𝜑 → ∀𝑦 ∈ (𝑋(,)+∞)∃𝑧 ∈ ℝ+ ((𝑦 < 𝑧 ∧ ((1 + (𝐿 · 𝐸)) · 𝑧) < (𝐾 · 𝑦)) ∧ ∀𝑢 ∈ (𝑧[,]((1 + (𝐿 · 𝐸)) · 𝑧))(abs‘((𝑅𝑢) / 𝑢)) ≤ 𝐸))
2531, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 249, 250, 251, 252pntlemf 26949 . . . . . . . . . . 11 (𝜑 → ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))
254 2pos 12253 . . . . . . . . . . . . 13 0 < 2
255254a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 < 2)
256 lemul2 12005 . . . . . . . . . . . 12 ((((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
257236, 246, 32, 255, 256syl112anc 1374 . . . . . . . . . . 11 (𝜑 → (((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))) ≤ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) ↔ (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)))))
258253, 257mpbid 231 . . . . . . . . . 10 (𝜑 → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))))
259243recnd 11180 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (𝑈 / 𝑛) ∈ ℂ)
260259, 229, 181subdird 11609 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → (((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
261260sumeq2dv 15585 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
262243, 144remulcld 11182 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ)
263262recnd 11180 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))) → ((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℂ)
264133, 263, 230fsumsub 15670 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) · (log‘𝑛)) − ((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
265261, 264eqtrd 2776 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛)) = (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))))
266265oveq2d 7370 . . . . . . . . . . . 12 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) = (2 · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
267133, 262fsumrecl 15616 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ)
268267recnd 11180 . . . . . . . . . . . . 13 (𝜑 → Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℂ)
269228, 268, 231subdid 11608 . . . . . . . . . . . 12 (𝜑 → (2 · (Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) − Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) = ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
270266, 269eqtrd 2776 . . . . . . . . . . 11 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) = ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
271 remulcl 11133 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛)) ∈ ℝ) → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ∈ ℝ)
27231, 267, 271sylancr 587 . . . . . . . . . . . 12 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ∈ ℝ)
2731, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 249, 250, 251, 252pntlemk 26950 . . . . . . . . . . . 12 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)))
274272, 239, 241, 273lesub1dd 11768 . . . . . . . . . . 11 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((𝑈 / 𝑛) · (log‘𝑛))) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
275270, 274eqbrtrd 5126 . . . . . . . . . 10 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))(((𝑈 / 𝑛) − (abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍))) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
276238, 247, 248, 258, 275letrd 11309 . . . . . . . . 9 (𝜑 → (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛)))))
277238, 239, 241, 276lesubd 11756 . . . . . . . 8 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))))
27830recnd 11180 . . . . . . . . . 10 (𝜑 → (𝑈 · ((log‘𝑍) + 3)) ∈ ℂ)
27955recnd 11180 . . . . . . . . . 10 (𝜑 → (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ∈ ℂ)
280278, 279, 61subdird 11609 . . . . . . . . 9 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍))))
28154recnd 11180 . . . . . . . . . . . 12 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) ∈ ℂ)
282228, 281, 61mulassd 11175 . . . . . . . . . . 11 (𝜑 → ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍)) = (2 · ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍))))
28360, 61, 61mulassd 11175 . . . . . . . . . . . . 13 (𝜑 → ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍)) = (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍) · (log‘𝑍))))
28461sqvald 14045 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍)↑2) = ((log‘𝑍) · (log‘𝑍)))
285284oveq2d 7370 . . . . . . . . . . . . 13 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍)↑2)) = (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍) · (log‘𝑍))))
28651rpcnd 12956 . . . . . . . . . . . . . 14 (𝜑 → ((𝐿 · (𝐸↑2)) / (32 · 𝐵)) ∈ ℂ)
287234recnd 11180 . . . . . . . . . . . . . 14 (𝜑 → ((log‘𝑍)↑2) ∈ ℂ)
288117, 286, 287mulassd 11175 . . . . . . . . . . . . 13 (𝜑 → (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · ((log‘𝑍)↑2)) = ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))
289283, 285, 2883eqtr2d 2782 . . . . . . . . . . . 12 (𝜑 → ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍)) = ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))
290289oveq2d 7370 . . . . . . . . . . 11 (𝜑 → (2 · ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) · (log‘𝑍))) = (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))))
291282, 290eqtrd 2776 . . . . . . . . . 10 (𝜑 → ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍)) = (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2)))))
292291oveq2d 7370 . . . . . . . . 9 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − ((2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) · (log‘𝑍))) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))))
293280, 292eqtrd 2776 . . . . . . . 8 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)) = (((𝑈 · ((log‘𝑍) + 3)) · (log‘𝑍)) − (2 · ((𝑈𝐸) · (((𝐿 · (𝐸↑2)) / (32 · 𝐵)) · ((log‘𝑍)↑2))))))
294277, 293breqtrrd 5132 . . . . . . 7 (𝜑 → (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍)))
295241, 56, 131ledivmul2d 13008 . . . . . . 7 (𝜑 → (((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ↔ (2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) · (log‘𝑍))))
296294, 295mpbird 256 . . . . . 6 (𝜑 → ((2 · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) / (log‘𝑍)) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
297233, 296eqbrtrrd 5128 . . . . 5 (𝜑 → ((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) ≤ ((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
298147, 56, 57, 297leadd1dd 11766 . . . 4 (𝜑 → (((2 / (log‘𝑍)) · Σ𝑛 ∈ (1...(⌊‘(𝑍 / 𝑌)))((abs‘((𝑅‘(𝑍 / 𝑛)) / 𝑍)) · (log‘𝑛))) + 𝐶) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶))
29925, 148, 58, 227, 298letrd 11309 . . 3 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶))
300 remulcl 11133 . . . . . . . . 9 ((𝑈 ∈ ℝ ∧ 3 ∈ ℝ) → (𝑈 · 3) ∈ ℝ)
30126, 27, 300sylancl 586 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℝ)
302301, 57readdcld 11181 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ∈ ℝ)
30316simp3d 1144 . . . . . . . 8 (𝜑 → ((4 / (𝐿 · 𝐸)) ≤ (√‘𝑍) ∧ (((log‘𝑋) / (log‘𝐾)) + 2) ≤ (((log‘𝑍) / (log‘𝐾)) / 4) ∧ ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
304303simp3d 1144 . . . . . . 7 (𝜑 → ((𝑈 · 3) + 𝐶) ≤ (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))
305302, 54, 125, 304leadd2dd 11767 . . . . . 6 (𝜑 → ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)) ≤ ((𝑈 · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
30628recnd 11180 . . . . . . . . 9 (𝜑 → 3 ∈ ℂ)
30759, 61, 306adddid 11176 . . . . . . . 8 (𝜑 → (𝑈 · ((log‘𝑍) + 3)) = ((𝑈 · (log‘𝑍)) + (𝑈 · 3)))
308307oveq1d 7369 . . . . . . 7 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) = (((𝑈 · (log‘𝑍)) + (𝑈 · 3)) + 𝐶))
309125recnd 11180 . . . . . . . 8 (𝜑 → (𝑈 · (log‘𝑍)) ∈ ℂ)
31059, 306mulcld 11172 . . . . . . . 8 (𝜑 → (𝑈 · 3) ∈ ℂ)
31113rpcnd 12956 . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
312309, 310, 311addassd 11174 . . . . . . 7 (𝜑 → (((𝑈 · (log‘𝑍)) + (𝑈 · 3)) + 𝐶) = ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)))
313308, 312eqtrd 2776 . . . . . 6 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) = ((𝑈 · (log‘𝑍)) + ((𝑈 · 3) + 𝐶)))
3142812timesd 12393 . . . . . . . 8 (𝜑 → (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) = ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
315314oveq2d 7370 . . . . . . 7 (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
316309, 281, 281nppcan3d 11536 . . . . . . 7 (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + ((((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = ((𝑈 · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
317315, 316eqtrd 2776 . . . . . 6 (𝜑 → (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = ((𝑈 · (log‘𝑍)) + (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
318305, 313, 3173brtr4d 5136 . . . . 5 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ≤ (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))))
31930, 57readdcld 11181 . . . . . 6 (𝜑 → ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ∈ ℝ)
320319, 55, 126lesubaddd 11749 . . . . 5 (𝜑 → ((((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ≤ ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) ↔ ((𝑈 · ((log‘𝑍) + 3)) + 𝐶) ≤ (((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))) + (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))))
321318, 320mpbird 256 . . . 4 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) ≤ ((𝑈 · (log‘𝑍)) − (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍))))
322278, 311, 279addsubd 11530 . . . 4 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) + 𝐶) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) = (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶))
323321, 322, 1243brtr3d 5135 . . 3 (𝜑 → (((𝑈 · ((log‘𝑍) + 3)) − (2 · (((𝑈𝐸) · ((𝐿 · (𝐸↑2)) / (32 · 𝐵))) · (log‘𝑍)))) + 𝐶) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
32425, 58, 127, 299, 323letrd 11309 . 2 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍)))
325 3z 12533 . . . . . . 7 3 ∈ ℤ
326 rpexpcl 13983 . . . . . . 7 ((𝑈 ∈ ℝ+ ∧ 3 ∈ ℤ) → (𝑈↑3) ∈ ℝ+)
3277, 325, 326sylancl 586 . . . . . 6 (𝜑 → (𝑈↑3) ∈ ℝ+)
32896, 327rpmulcld 12970 . . . . 5 (𝜑 → (𝐹 · (𝑈↑3)) ∈ ℝ+)
329328rpred 12954 . . . 4 (𝜑 → (𝐹 · (𝑈↑3)) ∈ ℝ)
33026, 329resubcld 11580 . . 3 (𝜑 → (𝑈 − (𝐹 · (𝑈↑3))) ∈ ℝ)
33123, 330, 131lemul1d 12997 . 2 (𝜑 → ((abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))) ↔ ((abs‘((𝑅𝑍) / 𝑍)) · (log‘𝑍)) ≤ ((𝑈 − (𝐹 · (𝑈↑3))) · (log‘𝑍))))
332324, 331mpbird 256 1 (𝜑 → (abs‘((𝑅𝑍) / 𝑍)) ≤ (𝑈 − (𝐹 · (𝑈↑3))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2942  wral 3063  wrex 3072   class class class wbr 5104  cmpt 5187  cfv 6494  (class class class)co 7354  cc 11046  cr 11047  0cc0 11048  1c1 11049   + caddc 11051   · cmul 11053  +∞cpnf 11183  *cxr 11185   < clt 11186  cle 11187  cmin 11382   / cdiv 11809  cn 12150  2c2 12205  3c3 12206  4c4 12207  0cn0 12410  cz 12496  cdc 12615  +crp 12912  (,)cioo 13261  [,)cico 13263  [,]cicc 13264  ...cfz 13421  cfl 13692  cexp 13964  csqrt 15115  abscabs 15116  Σcsu 15567  expce 15941  eceu 15942  logclog 25906  ψcchp 26438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-inf2 9574  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125  ax-pre-sup 11126  ax-addf 11127  ax-mulf 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-se 5588  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-isom 6503  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7614  df-om 7800  df-1st 7918  df-2nd 7919  df-supp 8090  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-1o 8409  df-2o 8410  df-oadd 8413  df-er 8645  df-map 8764  df-pm 8765  df-ixp 8833  df-en 8881  df-dom 8882  df-sdom 8883  df-fin 8884  df-fsupp 9303  df-fi 9344  df-sup 9375  df-inf 9376  df-oi 9443  df-dju 9834  df-card 9872  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-div 11810  df-nn 12151  df-2 12213  df-3 12214  df-4 12215  df-5 12216  df-6 12217  df-7 12218  df-8 12219  df-9 12220  df-n0 12411  df-xnn0 12483  df-z 12497  df-dec 12616  df-uz 12761  df-q 12871  df-rp 12913  df-xneg 13030  df-xadd 13031  df-xmul 13032  df-ioo 13265  df-ioc 13266  df-ico 13267  df-icc 13268  df-fz 13422  df-fzo 13565  df-fl 13694  df-mod 13772  df-seq 13904  df-exp 13965  df-fac 14171  df-bc 14200  df-hash 14228  df-shft 14949  df-cj 14981  df-re 14982  df-im 14983  df-sqrt 15117  df-abs 15118  df-limsup 15350  df-clim 15367  df-rlim 15368  df-sum 15568  df-ef 15947  df-e 15948  df-sin 15949  df-cos 15950  df-tan 15951  df-pi 15952  df-dvds 16134  df-gcd 16372  df-prm 16545  df-pc 16706  df-struct 17016  df-sets 17033  df-slot 17051  df-ndx 17063  df-base 17081  df-ress 17110  df-plusg 17143  df-mulr 17144  df-starv 17145  df-sca 17146  df-vsca 17147  df-ip 17148  df-tset 17149  df-ple 17150  df-ds 17152  df-unif 17153  df-hom 17154  df-cco 17155  df-rest 17301  df-topn 17302  df-0g 17320  df-gsum 17321  df-topgen 17322  df-pt 17323  df-prds 17326  df-xrs 17381  df-qtop 17386  df-imas 17387  df-xps 17389  df-mre 17463  df-mrc 17464  df-acs 17466  df-mgm 18494  df-sgrp 18543  df-mnd 18554  df-submnd 18599  df-mulg 18869  df-cntz 19093  df-cmn 19560  df-psmet 20784  df-xmet 20785  df-met 20786  df-bl 20787  df-mopn 20788  df-fbas 20789  df-fg 20790  df-cnfld 20793  df-top 22239  df-topon 22256  df-topsp 22278  df-bases 22292  df-cld 22366  df-ntr 22367  df-cls 22368  df-nei 22445  df-lp 22483  df-perf 22484  df-cn 22574  df-cnp 22575  df-haus 22662  df-cmp 22734  df-tx 22909  df-hmeo 23102  df-fil 23193  df-fm 23285  df-flim 23286  df-flf 23287  df-xms 23669  df-ms 23670  df-tms 23671  df-cncf 24237  df-limc 25226  df-dv 25227  df-ulm 25732  df-log 25908  df-atan 26213  df-em 26338  df-vma 26443  df-chp 26444
This theorem is referenced by:  pntleme  26952
  Copyright terms: Public domain W3C validator