MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1n Structured version   Visualization version   GIF version

Theorem bcp1n 13664
Description: The proportion of one binomial coefficient to another with 𝑁 increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcp1n (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))

Proof of Theorem bcp1n
StepHypRef Expression
1 elfz3nn0 12989 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
2 facp1 13626 . . . . 5 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
31, 2syl 17 . . . 4 (𝐾 ∈ (0...𝑁) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
4 fznn0sub 12927 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
5 facp1 13626 . . . . . . . 8 ((𝑁𝐾) ∈ ℕ0 → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
64, 5syl 17 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
71nn0cnd 11945 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℂ)
8 1cnd 10624 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 1 ∈ ℂ)
9 elfznn0 12988 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
109nn0cnd 11945 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
117, 8, 10addsubd 11006 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) = ((𝑁𝐾) + 1))
1211fveq2d 6667 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘((𝑁 + 1) − 𝐾)) = (!‘((𝑁𝐾) + 1)))
1311oveq2d 7161 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
146, 12, 133eqtr4d 2863 . . . . . 6 (𝐾 ∈ (0...𝑁) → (!‘((𝑁 + 1) − 𝐾)) = ((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)))
1514oveq1d 7160 . . . . 5 (𝐾 ∈ (0...𝑁) → ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾)) = (((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)) · (!‘𝐾)))
164faccld 13632 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
1716nncnd 11642 . . . . . 6 (𝐾 ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
18 nn0p1nn 11924 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
194, 18syl 17 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
2011, 19eqeltrd 2910 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
2120nncnd 11642 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
229faccld 13632 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℕ)
2322nncnd 11642 . . . . . 6 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℂ)
2417, 21, 23mul32d 10838 . . . . 5 (𝐾 ∈ (0...𝑁) → (((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)) · (!‘𝐾)) = (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾)))
2515, 24eqtrd 2853 . . . 4 (𝐾 ∈ (0...𝑁) → ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾)) = (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾)))
263, 25oveq12d 7163 . . 3 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))) = (((!‘𝑁) · (𝑁 + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾))))
271faccld 13632 . . . . 5 (𝐾 ∈ (0...𝑁) → (!‘𝑁) ∈ ℕ)
2827nncnd 11642 . . . 4 (𝐾 ∈ (0...𝑁) → (!‘𝑁) ∈ ℂ)
29 nn0p1nn 11924 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
301, 29syl 17 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℕ)
3130nncnd 11642 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℂ)
3216, 22nnmulcld 11678 . . . . 5 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
33 nncn 11634 . . . . . 6 (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ)
34 nnne0 11659 . . . . . 6 (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ → ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0)
3533, 34jca 512 . . . . 5 (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ → (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0))
3632, 35syl 17 . . . 4 (𝐾 ∈ (0...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0))
3720nnne0d 11675 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ≠ 0)
3821, 37jca 512 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) ∈ ℂ ∧ ((𝑁 + 1) − 𝐾) ≠ 0))
39 divmuldiv 11328 . . . 4 ((((!‘𝑁) ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) ∧ ((((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0) ∧ (((𝑁 + 1) − 𝐾) ∈ ℂ ∧ ((𝑁 + 1) − 𝐾) ≠ 0))) → (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((!‘𝑁) · (𝑁 + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾))))
4028, 31, 36, 38, 39syl22anc 834 . . 3 (𝐾 ∈ (0...𝑁) → (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((!‘𝑁) · (𝑁 + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾))))
4126, 40eqtr4d 2856 . 2 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))) = (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
42 fzelp1 12947 . . 3 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1)))
43 bcval2 13653 . . 3 (𝐾 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1)C𝐾) = ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))))
4442, 43syl 17 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))))
45 bcval2 13653 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
4645oveq1d 7160 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
4741, 44, 463eqtr4d 2863 1 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  cfv 6348  (class class class)co 7145  cc 10523  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  cmin 10858   / cdiv 11285  cn 11626  0cn0 11885  ...cfz 12880  !cfa 13621  Ccbc 13650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-seq 13358  df-fac 13622  df-bc 13651
This theorem is referenced by:  bcp1nk  13665  bcpasc  13669  bcp1ctr  25782  bcm1n  30444  bcm1nt  32866
  Copyright terms: Public domain W3C validator