MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1n Structured version   Visualization version   GIF version

Theorem bcp1n 13958
Description: The proportion of one binomial coefficient to another with 𝑁 increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcp1n (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))

Proof of Theorem bcp1n
StepHypRef Expression
1 elfz3nn0 13279 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
2 facp1 13920 . . . . 5 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
31, 2syl 17 . . . 4 (𝐾 ∈ (0...𝑁) → (!‘(𝑁 + 1)) = ((!‘𝑁) · (𝑁 + 1)))
4 fznn0sub 13217 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
5 facp1 13920 . . . . . . . 8 ((𝑁𝐾) ∈ ℕ0 → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
64, 5syl 17 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘((𝑁𝐾) + 1)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
71nn0cnd 12225 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℂ)
8 1cnd 10901 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 1 ∈ ℂ)
9 elfznn0 13278 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
109nn0cnd 12225 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
117, 8, 10addsubd 11283 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) = ((𝑁𝐾) + 1))
1211fveq2d 6760 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘((𝑁 + 1) − 𝐾)) = (!‘((𝑁𝐾) + 1)))
1311oveq2d 7271 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)) = ((!‘(𝑁𝐾)) · ((𝑁𝐾) + 1)))
146, 12, 133eqtr4d 2788 . . . . . 6 (𝐾 ∈ (0...𝑁) → (!‘((𝑁 + 1) − 𝐾)) = ((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)))
1514oveq1d 7270 . . . . 5 (𝐾 ∈ (0...𝑁) → ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾)) = (((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)) · (!‘𝐾)))
164faccld 13926 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℕ)
1716nncnd 11919 . . . . . 6 (𝐾 ∈ (0...𝑁) → (!‘(𝑁𝐾)) ∈ ℂ)
18 nn0p1nn 12202 . . . . . . . . 9 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
194, 18syl 17 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
2011, 19eqeltrd 2839 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
2120nncnd 11919 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
229faccld 13926 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℕ)
2322nncnd 11919 . . . . . 6 (𝐾 ∈ (0...𝑁) → (!‘𝐾) ∈ ℂ)
2417, 21, 23mul32d 11115 . . . . 5 (𝐾 ∈ (0...𝑁) → (((!‘(𝑁𝐾)) · ((𝑁 + 1) − 𝐾)) · (!‘𝐾)) = (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾)))
2515, 24eqtrd 2778 . . . 4 (𝐾 ∈ (0...𝑁) → ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾)) = (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾)))
263, 25oveq12d 7273 . . 3 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))) = (((!‘𝑁) · (𝑁 + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾))))
271faccld 13926 . . . . 5 (𝐾 ∈ (0...𝑁) → (!‘𝑁) ∈ ℕ)
2827nncnd 11919 . . . 4 (𝐾 ∈ (0...𝑁) → (!‘𝑁) ∈ ℂ)
29 nn0p1nn 12202 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
301, 29syl 17 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℕ)
3130nncnd 11919 . . . 4 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℂ)
3216, 22nnmulcld 11956 . . . . 5 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ)
33 nncn 11911 . . . . . 6 (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ → ((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ)
34 nnne0 11937 . . . . . 6 (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ → ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0)
3533, 34jca 511 . . . . 5 (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℕ → (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0))
3632, 35syl 17 . . . 4 (𝐾 ∈ (0...𝑁) → (((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0))
3720nnne0d 11953 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ≠ 0)
3821, 37jca 511 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) ∈ ℂ ∧ ((𝑁 + 1) − 𝐾) ≠ 0))
39 divmuldiv 11605 . . . 4 ((((!‘𝑁) ∈ ℂ ∧ (𝑁 + 1) ∈ ℂ) ∧ ((((!‘(𝑁𝐾)) · (!‘𝐾)) ∈ ℂ ∧ ((!‘(𝑁𝐾)) · (!‘𝐾)) ≠ 0) ∧ (((𝑁 + 1) − 𝐾) ∈ ℂ ∧ ((𝑁 + 1) − 𝐾) ≠ 0))) → (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((!‘𝑁) · (𝑁 + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾))))
4028, 31, 36, 38, 39syl22anc 835 . . 3 (𝐾 ∈ (0...𝑁) → (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((!‘𝑁) · (𝑁 + 1)) / (((!‘(𝑁𝐾)) · (!‘𝐾)) · ((𝑁 + 1) − 𝐾))))
4126, 40eqtr4d 2781 . 2 (𝐾 ∈ (0...𝑁) → ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))) = (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
42 fzelp1 13237 . . 3 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1)))
43 bcval2 13947 . . 3 (𝐾 ∈ (0...(𝑁 + 1)) → ((𝑁 + 1)C𝐾) = ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))))
4442, 43syl 17 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((!‘(𝑁 + 1)) / ((!‘((𝑁 + 1) − 𝐾)) · (!‘𝐾))))
45 bcval2 13947 . . 3 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
4645oveq1d 7270 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
4741, 44, 463eqtr4d 2788 1 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  ...cfz 13168  !cfa 13915  Ccbc 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650  df-fac 13916  df-bc 13945
This theorem is referenced by:  bcp1nk  13959  bcpasc  13963  bcp1ctr  26332  bcm1n  31018  bcm1nt  33609
  Copyright terms: Public domain W3C validator