Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5f Structured version   Visualization version   GIF version

Theorem flt4lem5f 42776
Description: Final equation of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. Given 𝐴↑4 + 𝐵↑4 = 𝐶↑2, provide a smaller solution. This satisfies the infinite descent condition. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5a.m 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.n 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.r 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
flt4lem5a.s 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
flt4lem5a.a (𝜑𝐴 ∈ ℕ)
flt4lem5a.b (𝜑𝐵 ∈ ℕ)
flt4lem5a.c (𝜑𝐶 ∈ ℕ)
flt4lem5a.1 (𝜑 → ¬ 2 ∥ 𝐴)
flt4lem5a.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem5a.3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem5f (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))

Proof of Theorem flt4lem5f
StepHypRef Expression
1 flt4lem5a.m . . 3 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
2 flt4lem5a.n . . 3 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
3 flt4lem5a.r . . 3 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
4 flt4lem5a.s . . 3 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
5 flt4lem5a.a . . 3 (𝜑𝐴 ∈ ℕ)
6 flt4lem5a.b . . 3 (𝜑𝐵 ∈ ℕ)
7 flt4lem5a.c . . 3 (𝜑𝐶 ∈ ℕ)
8 flt4lem5a.1 . . 3 (𝜑 → ¬ 2 ∥ 𝐴)
9 flt4lem5a.2 . . 3 (𝜑 → (𝐴 gcd 𝐶) = 1)
10 flt4lem5a.3 . . 3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10flt4lem5d 42774 . 2 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10flt4lem5e 42775 . . . . . 6 (𝜑 → (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ∧ (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ)))
1312simp2d 1143 . . . . 5 (𝜑 → (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ))
1413simp3d 1144 . . . 4 (𝜑𝑀 ∈ ℕ)
1513simp1d 1142 . . . . 5 (𝜑𝑅 ∈ ℕ)
1613simp2d 1143 . . . . 5 (𝜑𝑆 ∈ ℕ)
1715, 16nnmulcld 12185 . . . 4 (𝜑 → (𝑅 · 𝑆) ∈ ℕ)
1812simp3d 1144 . . . . 5 (𝜑 → ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ))
1918simprd 495 . . . 4 (𝜑 → (𝐵 / 2) ∈ ℕ)
2014nnzd 12501 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2115nnzd 12501 . . . . . . 7 (𝜑𝑅 ∈ ℤ)
2220, 21gcdcomd 16427 . . . . . 6 (𝜑 → (𝑀 gcd 𝑅) = (𝑅 gcd 𝑀))
2312simp1d 1142 . . . . . . 7 (𝜑 → ((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))
2423simp2d 1143 . . . . . 6 (𝜑 → (𝑅 gcd 𝑀) = 1)
2522, 24eqtrd 2768 . . . . 5 (𝜑 → (𝑀 gcd 𝑅) = 1)
2616nnzd 12501 . . . . . . 7 (𝜑𝑆 ∈ ℤ)
2720, 26gcdcomd 16427 . . . . . 6 (𝜑 → (𝑀 gcd 𝑆) = (𝑆 gcd 𝑀))
2823simp3d 1144 . . . . . 6 (𝜑 → (𝑆 gcd 𝑀) = 1)
2927, 28eqtrd 2768 . . . . 5 (𝜑 → (𝑀 gcd 𝑆) = 1)
30 rpmul 16572 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (((𝑀 gcd 𝑅) = 1 ∧ (𝑀 gcd 𝑆) = 1) → (𝑀 gcd (𝑅 · 𝑆)) = 1))
3120, 21, 26, 30syl3anc 1373 . . . . 5 (𝜑 → (((𝑀 gcd 𝑅) = 1 ∧ (𝑀 gcd 𝑆) = 1) → (𝑀 gcd (𝑅 · 𝑆)) = 1))
3225, 29, 31mp2and 699 . . . 4 (𝜑 → (𝑀 gcd (𝑅 · 𝑆)) = 1)
3318simpld 494 . . . 4 (𝜑 → (𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2))
3414, 17, 19, 32, 33flt4lem4 42768 . . 3 (𝜑 → (𝑀 = ((𝑀 gcd (𝐵 / 2))↑2) ∧ (𝑅 · 𝑆) = (((𝑅 · 𝑆) gcd (𝐵 / 2))↑2)))
3534simpld 494 . 2 (𝜑𝑀 = ((𝑀 gcd (𝐵 / 2))↑2))
3614, 16nnmulcld 12185 . . . . . . 7 (𝜑 → (𝑀 · 𝑆) ∈ ℕ)
3736nnzd 12501 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑆) ∈ ℤ)
3837, 21gcdcomd 16427 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑆) gcd 𝑅) = (𝑅 gcd (𝑀 · 𝑆)))
3923simp1d 1142 . . . . . . . . 9 (𝜑 → (𝑅 gcd 𝑆) = 1)
40 rpmul 16572 . . . . . . . . . 10 ((𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (((𝑅 gcd 𝑀) = 1 ∧ (𝑅 gcd 𝑆) = 1) → (𝑅 gcd (𝑀 · 𝑆)) = 1))
4121, 20, 26, 40syl3anc 1373 . . . . . . . . 9 (𝜑 → (((𝑅 gcd 𝑀) = 1 ∧ (𝑅 gcd 𝑆) = 1) → (𝑅 gcd (𝑀 · 𝑆)) = 1))
4224, 39, 41mp2and 699 . . . . . . . 8 (𝜑 → (𝑅 gcd (𝑀 · 𝑆)) = 1)
4338, 42eqtrd 2768 . . . . . . 7 (𝜑 → ((𝑀 · 𝑆) gcd 𝑅) = 1)
4414nncnd 12148 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4516nncnd 12148 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
4615nncnd 12148 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
4744, 45, 46mul32d 11330 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑆) · 𝑅) = ((𝑀 · 𝑅) · 𝑆))
4844, 46, 45mulassd 11142 . . . . . . . . 9 (𝜑 → ((𝑀 · 𝑅) · 𝑆) = (𝑀 · (𝑅 · 𝑆)))
4948, 33eqtrd 2768 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑅) · 𝑆) = ((𝐵 / 2)↑2))
5047, 49eqtrd 2768 . . . . . . 7 (𝜑 → ((𝑀 · 𝑆) · 𝑅) = ((𝐵 / 2)↑2))
5136, 15, 19, 43, 50flt4lem4 42768 . . . . . 6 (𝜑 → ((𝑀 · 𝑆) = (((𝑀 · 𝑆) gcd (𝐵 / 2))↑2) ∧ 𝑅 = ((𝑅 gcd (𝐵 / 2))↑2)))
5251simprd 495 . . . . 5 (𝜑𝑅 = ((𝑅 gcd (𝐵 / 2))↑2))
5352oveq1d 7367 . . . 4 (𝜑 → (𝑅↑2) = (((𝑅 gcd (𝐵 / 2))↑2)↑2))
54 gcdnncl 16420 . . . . . . 7 ((𝑅 ∈ ℕ ∧ (𝐵 / 2) ∈ ℕ) → (𝑅 gcd (𝐵 / 2)) ∈ ℕ)
5515, 19, 54syl2anc 584 . . . . . 6 (𝜑 → (𝑅 gcd (𝐵 / 2)) ∈ ℕ)
5655nncnd 12148 . . . . 5 (𝜑 → (𝑅 gcd (𝐵 / 2)) ∈ ℂ)
5756flt4lem 42764 . . . 4 (𝜑 → ((𝑅 gcd (𝐵 / 2))↑4) = (((𝑅 gcd (𝐵 / 2))↑2)↑2))
5853, 57eqtr4d 2771 . . 3 (𝜑 → (𝑅↑2) = ((𝑅 gcd (𝐵 / 2))↑4))
5914, 15nnmulcld 12185 . . . . . . 7 (𝜑 → (𝑀 · 𝑅) ∈ ℕ)
6059nnzd 12501 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑅) ∈ ℤ)
6160, 26gcdcomd 16427 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑅) gcd 𝑆) = (𝑆 gcd (𝑀 · 𝑅)))
6226, 21gcdcomd 16427 . . . . . . . . . 10 (𝜑 → (𝑆 gcd 𝑅) = (𝑅 gcd 𝑆))
6362, 39eqtrd 2768 . . . . . . . . 9 (𝜑 → (𝑆 gcd 𝑅) = 1)
64 rpmul 16572 . . . . . . . . . 10 ((𝑆 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (((𝑆 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑅) = 1) → (𝑆 gcd (𝑀 · 𝑅)) = 1))
6526, 20, 21, 64syl3anc 1373 . . . . . . . . 9 (𝜑 → (((𝑆 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑅) = 1) → (𝑆 gcd (𝑀 · 𝑅)) = 1))
6628, 63, 65mp2and 699 . . . . . . . 8 (𝜑 → (𝑆 gcd (𝑀 · 𝑅)) = 1)
6761, 66eqtrd 2768 . . . . . . 7 (𝜑 → ((𝑀 · 𝑅) gcd 𝑆) = 1)
6859, 16, 19, 67, 49flt4lem4 42768 . . . . . 6 (𝜑 → ((𝑀 · 𝑅) = (((𝑀 · 𝑅) gcd (𝐵 / 2))↑2) ∧ 𝑆 = ((𝑆 gcd (𝐵 / 2))↑2)))
6968simprd 495 . . . . 5 (𝜑𝑆 = ((𝑆 gcd (𝐵 / 2))↑2))
7069oveq1d 7367 . . . 4 (𝜑 → (𝑆↑2) = (((𝑆 gcd (𝐵 / 2))↑2)↑2))
71 gcdnncl 16420 . . . . . . 7 ((𝑆 ∈ ℕ ∧ (𝐵 / 2) ∈ ℕ) → (𝑆 gcd (𝐵 / 2)) ∈ ℕ)
7216, 19, 71syl2anc 584 . . . . . 6 (𝜑 → (𝑆 gcd (𝐵 / 2)) ∈ ℕ)
7372nncnd 12148 . . . . 5 (𝜑 → (𝑆 gcd (𝐵 / 2)) ∈ ℂ)
7473flt4lem 42764 . . . 4 (𝜑 → ((𝑆 gcd (𝐵 / 2))↑4) = (((𝑆 gcd (𝐵 / 2))↑2)↑2))
7570, 74eqtr4d 2771 . . 3 (𝜑 → (𝑆↑2) = ((𝑆 gcd (𝐵 / 2))↑4))
7658, 75oveq12d 7370 . 2 (𝜑 → ((𝑅↑2) + (𝑆↑2)) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))
7711, 35, 763eqtr3d 2776 1 (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  (class class class)co 7352  1c1 11014   + caddc 11016   · cmul 11018  cmin 11351   / cdiv 11781  cn 12132  2c2 12187  4c4 12189  cz 12475  cexp 13970  csqrt 15142  cdvds 16165   gcd cgcd 16407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-fz 13410  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-gcd 16408  df-prm 16585  df-numer 16648  df-denom 16649
This theorem is referenced by:  flt4lem7  42778
  Copyright terms: Public domain W3C validator