Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5f Structured version   Visualization version   GIF version

Theorem flt4lem5f 42652
Description: Final equation of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. Given 𝐴↑4 + 𝐵↑4 = 𝐶↑2, provide a smaller solution. This satisfies the infinite descent condition. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5a.m 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.n 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.r 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
flt4lem5a.s 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
flt4lem5a.a (𝜑𝐴 ∈ ℕ)
flt4lem5a.b (𝜑𝐵 ∈ ℕ)
flt4lem5a.c (𝜑𝐶 ∈ ℕ)
flt4lem5a.1 (𝜑 → ¬ 2 ∥ 𝐴)
flt4lem5a.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem5a.3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem5f (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))

Proof of Theorem flt4lem5f
StepHypRef Expression
1 flt4lem5a.m . . 3 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
2 flt4lem5a.n . . 3 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
3 flt4lem5a.r . . 3 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
4 flt4lem5a.s . . 3 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
5 flt4lem5a.a . . 3 (𝜑𝐴 ∈ ℕ)
6 flt4lem5a.b . . 3 (𝜑𝐵 ∈ ℕ)
7 flt4lem5a.c . . 3 (𝜑𝐶 ∈ ℕ)
8 flt4lem5a.1 . . 3 (𝜑 → ¬ 2 ∥ 𝐴)
9 flt4lem5a.2 . . 3 (𝜑 → (𝐴 gcd 𝐶) = 1)
10 flt4lem5a.3 . . 3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10flt4lem5d 42650 . 2 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10flt4lem5e 42651 . . . . . 6 (𝜑 → (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ∧ (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ)))
1312simp2d 1143 . . . . 5 (𝜑 → (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ))
1413simp3d 1144 . . . 4 (𝜑𝑀 ∈ ℕ)
1513simp1d 1142 . . . . 5 (𝜑𝑅 ∈ ℕ)
1613simp2d 1143 . . . . 5 (𝜑𝑆 ∈ ℕ)
1715, 16nnmulcld 12246 . . . 4 (𝜑 → (𝑅 · 𝑆) ∈ ℕ)
1812simp3d 1144 . . . . 5 (𝜑 → ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ))
1918simprd 495 . . . 4 (𝜑 → (𝐵 / 2) ∈ ℕ)
2014nnzd 12563 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2115nnzd 12563 . . . . . . 7 (𝜑𝑅 ∈ ℤ)
2220, 21gcdcomd 16491 . . . . . 6 (𝜑 → (𝑀 gcd 𝑅) = (𝑅 gcd 𝑀))
2312simp1d 1142 . . . . . . 7 (𝜑 → ((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))
2423simp2d 1143 . . . . . 6 (𝜑 → (𝑅 gcd 𝑀) = 1)
2522, 24eqtrd 2765 . . . . 5 (𝜑 → (𝑀 gcd 𝑅) = 1)
2616nnzd 12563 . . . . . . 7 (𝜑𝑆 ∈ ℤ)
2720, 26gcdcomd 16491 . . . . . 6 (𝜑 → (𝑀 gcd 𝑆) = (𝑆 gcd 𝑀))
2823simp3d 1144 . . . . . 6 (𝜑 → (𝑆 gcd 𝑀) = 1)
2927, 28eqtrd 2765 . . . . 5 (𝜑 → (𝑀 gcd 𝑆) = 1)
30 rpmul 16636 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (((𝑀 gcd 𝑅) = 1 ∧ (𝑀 gcd 𝑆) = 1) → (𝑀 gcd (𝑅 · 𝑆)) = 1))
3120, 21, 26, 30syl3anc 1373 . . . . 5 (𝜑 → (((𝑀 gcd 𝑅) = 1 ∧ (𝑀 gcd 𝑆) = 1) → (𝑀 gcd (𝑅 · 𝑆)) = 1))
3225, 29, 31mp2and 699 . . . 4 (𝜑 → (𝑀 gcd (𝑅 · 𝑆)) = 1)
3318simpld 494 . . . 4 (𝜑 → (𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2))
3414, 17, 19, 32, 33flt4lem4 42644 . . 3 (𝜑 → (𝑀 = ((𝑀 gcd (𝐵 / 2))↑2) ∧ (𝑅 · 𝑆) = (((𝑅 · 𝑆) gcd (𝐵 / 2))↑2)))
3534simpld 494 . 2 (𝜑𝑀 = ((𝑀 gcd (𝐵 / 2))↑2))
3614, 16nnmulcld 12246 . . . . . . 7 (𝜑 → (𝑀 · 𝑆) ∈ ℕ)
3736nnzd 12563 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑆) ∈ ℤ)
3837, 21gcdcomd 16491 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑆) gcd 𝑅) = (𝑅 gcd (𝑀 · 𝑆)))
3923simp1d 1142 . . . . . . . . 9 (𝜑 → (𝑅 gcd 𝑆) = 1)
40 rpmul 16636 . . . . . . . . . 10 ((𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (((𝑅 gcd 𝑀) = 1 ∧ (𝑅 gcd 𝑆) = 1) → (𝑅 gcd (𝑀 · 𝑆)) = 1))
4121, 20, 26, 40syl3anc 1373 . . . . . . . . 9 (𝜑 → (((𝑅 gcd 𝑀) = 1 ∧ (𝑅 gcd 𝑆) = 1) → (𝑅 gcd (𝑀 · 𝑆)) = 1))
4224, 39, 41mp2and 699 . . . . . . . 8 (𝜑 → (𝑅 gcd (𝑀 · 𝑆)) = 1)
4338, 42eqtrd 2765 . . . . . . 7 (𝜑 → ((𝑀 · 𝑆) gcd 𝑅) = 1)
4414nncnd 12209 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4516nncnd 12209 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
4615nncnd 12209 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
4744, 45, 46mul32d 11391 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑆) · 𝑅) = ((𝑀 · 𝑅) · 𝑆))
4844, 46, 45mulassd 11204 . . . . . . . . 9 (𝜑 → ((𝑀 · 𝑅) · 𝑆) = (𝑀 · (𝑅 · 𝑆)))
4948, 33eqtrd 2765 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑅) · 𝑆) = ((𝐵 / 2)↑2))
5047, 49eqtrd 2765 . . . . . . 7 (𝜑 → ((𝑀 · 𝑆) · 𝑅) = ((𝐵 / 2)↑2))
5136, 15, 19, 43, 50flt4lem4 42644 . . . . . 6 (𝜑 → ((𝑀 · 𝑆) = (((𝑀 · 𝑆) gcd (𝐵 / 2))↑2) ∧ 𝑅 = ((𝑅 gcd (𝐵 / 2))↑2)))
5251simprd 495 . . . . 5 (𝜑𝑅 = ((𝑅 gcd (𝐵 / 2))↑2))
5352oveq1d 7405 . . . 4 (𝜑 → (𝑅↑2) = (((𝑅 gcd (𝐵 / 2))↑2)↑2))
54 gcdnncl 16484 . . . . . . 7 ((𝑅 ∈ ℕ ∧ (𝐵 / 2) ∈ ℕ) → (𝑅 gcd (𝐵 / 2)) ∈ ℕ)
5515, 19, 54syl2anc 584 . . . . . 6 (𝜑 → (𝑅 gcd (𝐵 / 2)) ∈ ℕ)
5655nncnd 12209 . . . . 5 (𝜑 → (𝑅 gcd (𝐵 / 2)) ∈ ℂ)
5756flt4lem 42640 . . . 4 (𝜑 → ((𝑅 gcd (𝐵 / 2))↑4) = (((𝑅 gcd (𝐵 / 2))↑2)↑2))
5853, 57eqtr4d 2768 . . 3 (𝜑 → (𝑅↑2) = ((𝑅 gcd (𝐵 / 2))↑4))
5914, 15nnmulcld 12246 . . . . . . 7 (𝜑 → (𝑀 · 𝑅) ∈ ℕ)
6059nnzd 12563 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑅) ∈ ℤ)
6160, 26gcdcomd 16491 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑅) gcd 𝑆) = (𝑆 gcd (𝑀 · 𝑅)))
6226, 21gcdcomd 16491 . . . . . . . . . 10 (𝜑 → (𝑆 gcd 𝑅) = (𝑅 gcd 𝑆))
6362, 39eqtrd 2765 . . . . . . . . 9 (𝜑 → (𝑆 gcd 𝑅) = 1)
64 rpmul 16636 . . . . . . . . . 10 ((𝑆 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (((𝑆 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑅) = 1) → (𝑆 gcd (𝑀 · 𝑅)) = 1))
6526, 20, 21, 64syl3anc 1373 . . . . . . . . 9 (𝜑 → (((𝑆 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑅) = 1) → (𝑆 gcd (𝑀 · 𝑅)) = 1))
6628, 63, 65mp2and 699 . . . . . . . 8 (𝜑 → (𝑆 gcd (𝑀 · 𝑅)) = 1)
6761, 66eqtrd 2765 . . . . . . 7 (𝜑 → ((𝑀 · 𝑅) gcd 𝑆) = 1)
6859, 16, 19, 67, 49flt4lem4 42644 . . . . . 6 (𝜑 → ((𝑀 · 𝑅) = (((𝑀 · 𝑅) gcd (𝐵 / 2))↑2) ∧ 𝑆 = ((𝑆 gcd (𝐵 / 2))↑2)))
6968simprd 495 . . . . 5 (𝜑𝑆 = ((𝑆 gcd (𝐵 / 2))↑2))
7069oveq1d 7405 . . . 4 (𝜑 → (𝑆↑2) = (((𝑆 gcd (𝐵 / 2))↑2)↑2))
71 gcdnncl 16484 . . . . . . 7 ((𝑆 ∈ ℕ ∧ (𝐵 / 2) ∈ ℕ) → (𝑆 gcd (𝐵 / 2)) ∈ ℕ)
7216, 19, 71syl2anc 584 . . . . . 6 (𝜑 → (𝑆 gcd (𝐵 / 2)) ∈ ℕ)
7372nncnd 12209 . . . . 5 (𝜑 → (𝑆 gcd (𝐵 / 2)) ∈ ℂ)
7473flt4lem 42640 . . . 4 (𝜑 → ((𝑆 gcd (𝐵 / 2))↑4) = (((𝑆 gcd (𝐵 / 2))↑2)↑2))
7570, 74eqtr4d 2768 . . 3 (𝜑 → (𝑆↑2) = ((𝑆 gcd (𝐵 / 2))↑4))
7658, 75oveq12d 7408 . 2 (𝜑 → ((𝑅↑2) + (𝑆↑2)) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))
7711, 35, 763eqtr3d 2773 1 (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5110  cfv 6514  (class class class)co 7390  1c1 11076   + caddc 11078   · cmul 11080  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  4c4 12250  cz 12536  cexp 14033  csqrt 15206  cdvds 16229   gcd cgcd 16471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-prm 16649  df-numer 16712  df-denom 16713
This theorem is referenced by:  flt4lem7  42654
  Copyright terms: Public domain W3C validator