Proof of Theorem flt4lem5f
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | flt4lem5a.m | . . 3
⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) | 
| 2 |  | flt4lem5a.n | . . 3
⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) | 
| 3 |  | flt4lem5a.r | . . 3
⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) | 
| 4 |  | flt4lem5a.s | . . 3
⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) | 
| 5 |  | flt4lem5a.a | . . 3
⊢ (𝜑 → 𝐴 ∈ ℕ) | 
| 6 |  | flt4lem5a.b | . . 3
⊢ (𝜑 → 𝐵 ∈ ℕ) | 
| 7 |  | flt4lem5a.c | . . 3
⊢ (𝜑 → 𝐶 ∈ ℕ) | 
| 8 |  | flt4lem5a.1 | . . 3
⊢ (𝜑 → ¬ 2 ∥ 𝐴) | 
| 9 |  | flt4lem5a.2 | . . 3
⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | 
| 10 |  | flt4lem5a.3 | . . 3
⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) | 
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | flt4lem5d 42665 | . 2
⊢ (𝜑 → 𝑀 = ((𝑅↑2) + (𝑆↑2))) | 
| 12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | flt4lem5e 42666 | . . . . . 6
⊢ (𝜑 → (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ∧ (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ))) | 
| 13 | 12 | simp2d 1144 | . . . . 5
⊢ (𝜑 → (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ)) | 
| 14 | 13 | simp3d 1145 | . . . 4
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 15 | 13 | simp1d 1143 | . . . . 5
⊢ (𝜑 → 𝑅 ∈ ℕ) | 
| 16 | 13 | simp2d 1144 | . . . . 5
⊢ (𝜑 → 𝑆 ∈ ℕ) | 
| 17 | 15, 16 | nnmulcld 12319 | . . . 4
⊢ (𝜑 → (𝑅 · 𝑆) ∈ ℕ) | 
| 18 | 12 | simp3d 1145 | . . . . 5
⊢ (𝜑 → ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ)) | 
| 19 | 18 | simprd 495 | . . . 4
⊢ (𝜑 → (𝐵 / 2) ∈ ℕ) | 
| 20 | 14 | nnzd 12640 | . . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 21 | 15 | nnzd 12640 | . . . . . . 7
⊢ (𝜑 → 𝑅 ∈ ℤ) | 
| 22 | 20, 21 | gcdcomd 16551 | . . . . . 6
⊢ (𝜑 → (𝑀 gcd 𝑅) = (𝑅 gcd 𝑀)) | 
| 23 | 12 | simp1d 1143 | . . . . . . 7
⊢ (𝜑 → ((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1)) | 
| 24 | 23 | simp2d 1144 | . . . . . 6
⊢ (𝜑 → (𝑅 gcd 𝑀) = 1) | 
| 25 | 22, 24 | eqtrd 2777 | . . . . 5
⊢ (𝜑 → (𝑀 gcd 𝑅) = 1) | 
| 26 | 16 | nnzd 12640 | . . . . . . 7
⊢ (𝜑 → 𝑆 ∈ ℤ) | 
| 27 | 20, 26 | gcdcomd 16551 | . . . . . 6
⊢ (𝜑 → (𝑀 gcd 𝑆) = (𝑆 gcd 𝑀)) | 
| 28 | 23 | simp3d 1145 | . . . . . 6
⊢ (𝜑 → (𝑆 gcd 𝑀) = 1) | 
| 29 | 27, 28 | eqtrd 2777 | . . . . 5
⊢ (𝜑 → (𝑀 gcd 𝑆) = 1) | 
| 30 |  | rpmul 16696 | . . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (((𝑀 gcd 𝑅) = 1 ∧ (𝑀 gcd 𝑆) = 1) → (𝑀 gcd (𝑅 · 𝑆)) = 1)) | 
| 31 | 20, 21, 26, 30 | syl3anc 1373 | . . . . 5
⊢ (𝜑 → (((𝑀 gcd 𝑅) = 1 ∧ (𝑀 gcd 𝑆) = 1) → (𝑀 gcd (𝑅 · 𝑆)) = 1)) | 
| 32 | 25, 29, 31 | mp2and 699 | . . . 4
⊢ (𝜑 → (𝑀 gcd (𝑅 · 𝑆)) = 1) | 
| 33 | 18 | simpld 494 | . . . 4
⊢ (𝜑 → (𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2)) | 
| 34 | 14, 17, 19, 32, 33 | flt4lem4 42659 | . . 3
⊢ (𝜑 → (𝑀 = ((𝑀 gcd (𝐵 / 2))↑2) ∧ (𝑅 · 𝑆) = (((𝑅 · 𝑆) gcd (𝐵 / 2))↑2))) | 
| 35 | 34 | simpld 494 | . 2
⊢ (𝜑 → 𝑀 = ((𝑀 gcd (𝐵 / 2))↑2)) | 
| 36 | 14, 16 | nnmulcld 12319 | . . . . . . 7
⊢ (𝜑 → (𝑀 · 𝑆) ∈ ℕ) | 
| 37 | 36 | nnzd 12640 | . . . . . . . . 9
⊢ (𝜑 → (𝑀 · 𝑆) ∈ ℤ) | 
| 38 | 37, 21 | gcdcomd 16551 | . . . . . . . 8
⊢ (𝜑 → ((𝑀 · 𝑆) gcd 𝑅) = (𝑅 gcd (𝑀 · 𝑆))) | 
| 39 | 23 | simp1d 1143 | . . . . . . . . 9
⊢ (𝜑 → (𝑅 gcd 𝑆) = 1) | 
| 40 |  | rpmul 16696 | . . . . . . . . . 10
⊢ ((𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (((𝑅 gcd 𝑀) = 1 ∧ (𝑅 gcd 𝑆) = 1) → (𝑅 gcd (𝑀 · 𝑆)) = 1)) | 
| 41 | 21, 20, 26, 40 | syl3anc 1373 | . . . . . . . . 9
⊢ (𝜑 → (((𝑅 gcd 𝑀) = 1 ∧ (𝑅 gcd 𝑆) = 1) → (𝑅 gcd (𝑀 · 𝑆)) = 1)) | 
| 42 | 24, 39, 41 | mp2and 699 | . . . . . . . 8
⊢ (𝜑 → (𝑅 gcd (𝑀 · 𝑆)) = 1) | 
| 43 | 38, 42 | eqtrd 2777 | . . . . . . 7
⊢ (𝜑 → ((𝑀 · 𝑆) gcd 𝑅) = 1) | 
| 44 | 14 | nncnd 12282 | . . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℂ) | 
| 45 | 16 | nncnd 12282 | . . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ℂ) | 
| 46 | 15 | nncnd 12282 | . . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ ℂ) | 
| 47 | 44, 45, 46 | mul32d 11471 | . . . . . . . 8
⊢ (𝜑 → ((𝑀 · 𝑆) · 𝑅) = ((𝑀 · 𝑅) · 𝑆)) | 
| 48 | 44, 46, 45 | mulassd 11284 | . . . . . . . . 9
⊢ (𝜑 → ((𝑀 · 𝑅) · 𝑆) = (𝑀 · (𝑅 · 𝑆))) | 
| 49 | 48, 33 | eqtrd 2777 | . . . . . . . 8
⊢ (𝜑 → ((𝑀 · 𝑅) · 𝑆) = ((𝐵 / 2)↑2)) | 
| 50 | 47, 49 | eqtrd 2777 | . . . . . . 7
⊢ (𝜑 → ((𝑀 · 𝑆) · 𝑅) = ((𝐵 / 2)↑2)) | 
| 51 | 36, 15, 19, 43, 50 | flt4lem4 42659 | . . . . . 6
⊢ (𝜑 → ((𝑀 · 𝑆) = (((𝑀 · 𝑆) gcd (𝐵 / 2))↑2) ∧ 𝑅 = ((𝑅 gcd (𝐵 / 2))↑2))) | 
| 52 | 51 | simprd 495 | . . . . 5
⊢ (𝜑 → 𝑅 = ((𝑅 gcd (𝐵 / 2))↑2)) | 
| 53 | 52 | oveq1d 7446 | . . . 4
⊢ (𝜑 → (𝑅↑2) = (((𝑅 gcd (𝐵 / 2))↑2)↑2)) | 
| 54 |  | gcdnncl 16544 | . . . . . . 7
⊢ ((𝑅 ∈ ℕ ∧ (𝐵 / 2) ∈ ℕ) →
(𝑅 gcd (𝐵 / 2)) ∈ ℕ) | 
| 55 | 15, 19, 54 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → (𝑅 gcd (𝐵 / 2)) ∈ ℕ) | 
| 56 | 55 | nncnd 12282 | . . . . 5
⊢ (𝜑 → (𝑅 gcd (𝐵 / 2)) ∈ ℂ) | 
| 57 | 56 | flt4lem 42655 | . . . 4
⊢ (𝜑 → ((𝑅 gcd (𝐵 / 2))↑4) = (((𝑅 gcd (𝐵 / 2))↑2)↑2)) | 
| 58 | 53, 57 | eqtr4d 2780 | . . 3
⊢ (𝜑 → (𝑅↑2) = ((𝑅 gcd (𝐵 / 2))↑4)) | 
| 59 | 14, 15 | nnmulcld 12319 | . . . . . . 7
⊢ (𝜑 → (𝑀 · 𝑅) ∈ ℕ) | 
| 60 | 59 | nnzd 12640 | . . . . . . . . 9
⊢ (𝜑 → (𝑀 · 𝑅) ∈ ℤ) | 
| 61 | 60, 26 | gcdcomd 16551 | . . . . . . . 8
⊢ (𝜑 → ((𝑀 · 𝑅) gcd 𝑆) = (𝑆 gcd (𝑀 · 𝑅))) | 
| 62 | 26, 21 | gcdcomd 16551 | . . . . . . . . . 10
⊢ (𝜑 → (𝑆 gcd 𝑅) = (𝑅 gcd 𝑆)) | 
| 63 | 62, 39 | eqtrd 2777 | . . . . . . . . 9
⊢ (𝜑 → (𝑆 gcd 𝑅) = 1) | 
| 64 |  | rpmul 16696 | . . . . . . . . . 10
⊢ ((𝑆 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (((𝑆 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑅) = 1) → (𝑆 gcd (𝑀 · 𝑅)) = 1)) | 
| 65 | 26, 20, 21, 64 | syl3anc 1373 | . . . . . . . . 9
⊢ (𝜑 → (((𝑆 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑅) = 1) → (𝑆 gcd (𝑀 · 𝑅)) = 1)) | 
| 66 | 28, 63, 65 | mp2and 699 | . . . . . . . 8
⊢ (𝜑 → (𝑆 gcd (𝑀 · 𝑅)) = 1) | 
| 67 | 61, 66 | eqtrd 2777 | . . . . . . 7
⊢ (𝜑 → ((𝑀 · 𝑅) gcd 𝑆) = 1) | 
| 68 | 59, 16, 19, 67, 49 | flt4lem4 42659 | . . . . . 6
⊢ (𝜑 → ((𝑀 · 𝑅) = (((𝑀 · 𝑅) gcd (𝐵 / 2))↑2) ∧ 𝑆 = ((𝑆 gcd (𝐵 / 2))↑2))) | 
| 69 | 68 | simprd 495 | . . . . 5
⊢ (𝜑 → 𝑆 = ((𝑆 gcd (𝐵 / 2))↑2)) | 
| 70 | 69 | oveq1d 7446 | . . . 4
⊢ (𝜑 → (𝑆↑2) = (((𝑆 gcd (𝐵 / 2))↑2)↑2)) | 
| 71 |  | gcdnncl 16544 | . . . . . . 7
⊢ ((𝑆 ∈ ℕ ∧ (𝐵 / 2) ∈ ℕ) →
(𝑆 gcd (𝐵 / 2)) ∈ ℕ) | 
| 72 | 16, 19, 71 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → (𝑆 gcd (𝐵 / 2)) ∈ ℕ) | 
| 73 | 72 | nncnd 12282 | . . . . 5
⊢ (𝜑 → (𝑆 gcd (𝐵 / 2)) ∈ ℂ) | 
| 74 | 73 | flt4lem 42655 | . . . 4
⊢ (𝜑 → ((𝑆 gcd (𝐵 / 2))↑4) = (((𝑆 gcd (𝐵 / 2))↑2)↑2)) | 
| 75 | 70, 74 | eqtr4d 2780 | . . 3
⊢ (𝜑 → (𝑆↑2) = ((𝑆 gcd (𝐵 / 2))↑4)) | 
| 76 | 58, 75 | oveq12d 7449 | . 2
⊢ (𝜑 → ((𝑅↑2) + (𝑆↑2)) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4))) | 
| 77 | 11, 35, 76 | 3eqtr3d 2785 | 1
⊢ (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4))) |