Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5f Structured version   Visualization version   GIF version

Theorem flt4lem5f 40531
Description: Final equation of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. Given 𝐴↑4 + 𝐵↑4 = 𝐶↑2, provide a smaller solution. This satisfies the infinite descent condition. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5a.m 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.n 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.r 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
flt4lem5a.s 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
flt4lem5a.a (𝜑𝐴 ∈ ℕ)
flt4lem5a.b (𝜑𝐵 ∈ ℕ)
flt4lem5a.c (𝜑𝐶 ∈ ℕ)
flt4lem5a.1 (𝜑 → ¬ 2 ∥ 𝐴)
flt4lem5a.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem5a.3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem5f (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))

Proof of Theorem flt4lem5f
StepHypRef Expression
1 flt4lem5a.m . . 3 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
2 flt4lem5a.n . . 3 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
3 flt4lem5a.r . . 3 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
4 flt4lem5a.s . . 3 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
5 flt4lem5a.a . . 3 (𝜑𝐴 ∈ ℕ)
6 flt4lem5a.b . . 3 (𝜑𝐵 ∈ ℕ)
7 flt4lem5a.c . . 3 (𝜑𝐶 ∈ ℕ)
8 flt4lem5a.1 . . 3 (𝜑 → ¬ 2 ∥ 𝐴)
9 flt4lem5a.2 . . 3 (𝜑 → (𝐴 gcd 𝐶) = 1)
10 flt4lem5a.3 . . 3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10flt4lem5d 40529 . 2 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10flt4lem5e 40530 . . . . . 6 (𝜑 → (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ∧ (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ)))
1312simp2d 1143 . . . . 5 (𝜑 → (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ))
1413simp3d 1144 . . . 4 (𝜑𝑀 ∈ ℕ)
1513simp1d 1142 . . . . 5 (𝜑𝑅 ∈ ℕ)
1613simp2d 1143 . . . . 5 (𝜑𝑆 ∈ ℕ)
1715, 16nnmulcld 12072 . . . 4 (𝜑 → (𝑅 · 𝑆) ∈ ℕ)
1812simp3d 1144 . . . . 5 (𝜑 → ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ))
1918simprd 497 . . . 4 (𝜑 → (𝐵 / 2) ∈ ℕ)
2014nnzd 12471 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2115nnzd 12471 . . . . . . 7 (𝜑𝑅 ∈ ℤ)
2220, 21gcdcomd 16266 . . . . . 6 (𝜑 → (𝑀 gcd 𝑅) = (𝑅 gcd 𝑀))
2312simp1d 1142 . . . . . . 7 (𝜑 → ((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))
2423simp2d 1143 . . . . . 6 (𝜑 → (𝑅 gcd 𝑀) = 1)
2522, 24eqtrd 2776 . . . . 5 (𝜑 → (𝑀 gcd 𝑅) = 1)
2616nnzd 12471 . . . . . . 7 (𝜑𝑆 ∈ ℤ)
2720, 26gcdcomd 16266 . . . . . 6 (𝜑 → (𝑀 gcd 𝑆) = (𝑆 gcd 𝑀))
2823simp3d 1144 . . . . . 6 (𝜑 → (𝑆 gcd 𝑀) = 1)
2927, 28eqtrd 2776 . . . . 5 (𝜑 → (𝑀 gcd 𝑆) = 1)
30 rpmul 16409 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (((𝑀 gcd 𝑅) = 1 ∧ (𝑀 gcd 𝑆) = 1) → (𝑀 gcd (𝑅 · 𝑆)) = 1))
3120, 21, 26, 30syl3anc 1371 . . . . 5 (𝜑 → (((𝑀 gcd 𝑅) = 1 ∧ (𝑀 gcd 𝑆) = 1) → (𝑀 gcd (𝑅 · 𝑆)) = 1))
3225, 29, 31mp2and 697 . . . 4 (𝜑 → (𝑀 gcd (𝑅 · 𝑆)) = 1)
3318simpld 496 . . . 4 (𝜑 → (𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2))
3414, 17, 19, 32, 33flt4lem4 40523 . . 3 (𝜑 → (𝑀 = ((𝑀 gcd (𝐵 / 2))↑2) ∧ (𝑅 · 𝑆) = (((𝑅 · 𝑆) gcd (𝐵 / 2))↑2)))
3534simpld 496 . 2 (𝜑𝑀 = ((𝑀 gcd (𝐵 / 2))↑2))
3614, 16nnmulcld 12072 . . . . . . 7 (𝜑 → (𝑀 · 𝑆) ∈ ℕ)
3736nnzd 12471 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑆) ∈ ℤ)
3837, 21gcdcomd 16266 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑆) gcd 𝑅) = (𝑅 gcd (𝑀 · 𝑆)))
3923simp1d 1142 . . . . . . . . 9 (𝜑 → (𝑅 gcd 𝑆) = 1)
40 rpmul 16409 . . . . . . . . . 10 ((𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (((𝑅 gcd 𝑀) = 1 ∧ (𝑅 gcd 𝑆) = 1) → (𝑅 gcd (𝑀 · 𝑆)) = 1))
4121, 20, 26, 40syl3anc 1371 . . . . . . . . 9 (𝜑 → (((𝑅 gcd 𝑀) = 1 ∧ (𝑅 gcd 𝑆) = 1) → (𝑅 gcd (𝑀 · 𝑆)) = 1))
4224, 39, 41mp2and 697 . . . . . . . 8 (𝜑 → (𝑅 gcd (𝑀 · 𝑆)) = 1)
4338, 42eqtrd 2776 . . . . . . 7 (𝜑 → ((𝑀 · 𝑆) gcd 𝑅) = 1)
4414nncnd 12035 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4516nncnd 12035 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
4615nncnd 12035 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
4744, 45, 46mul32d 11231 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑆) · 𝑅) = ((𝑀 · 𝑅) · 𝑆))
4844, 46, 45mulassd 11044 . . . . . . . . 9 (𝜑 → ((𝑀 · 𝑅) · 𝑆) = (𝑀 · (𝑅 · 𝑆)))
4948, 33eqtrd 2776 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑅) · 𝑆) = ((𝐵 / 2)↑2))
5047, 49eqtrd 2776 . . . . . . 7 (𝜑 → ((𝑀 · 𝑆) · 𝑅) = ((𝐵 / 2)↑2))
5136, 15, 19, 43, 50flt4lem4 40523 . . . . . 6 (𝜑 → ((𝑀 · 𝑆) = (((𝑀 · 𝑆) gcd (𝐵 / 2))↑2) ∧ 𝑅 = ((𝑅 gcd (𝐵 / 2))↑2)))
5251simprd 497 . . . . 5 (𝜑𝑅 = ((𝑅 gcd (𝐵 / 2))↑2))
5352oveq1d 7322 . . . 4 (𝜑 → (𝑅↑2) = (((𝑅 gcd (𝐵 / 2))↑2)↑2))
54 gcdnncl 16259 . . . . . . 7 ((𝑅 ∈ ℕ ∧ (𝐵 / 2) ∈ ℕ) → (𝑅 gcd (𝐵 / 2)) ∈ ℕ)
5515, 19, 54syl2anc 585 . . . . . 6 (𝜑 → (𝑅 gcd (𝐵 / 2)) ∈ ℕ)
5655nncnd 12035 . . . . 5 (𝜑 → (𝑅 gcd (𝐵 / 2)) ∈ ℂ)
5756flt4lem 40519 . . . 4 (𝜑 → ((𝑅 gcd (𝐵 / 2))↑4) = (((𝑅 gcd (𝐵 / 2))↑2)↑2))
5853, 57eqtr4d 2779 . . 3 (𝜑 → (𝑅↑2) = ((𝑅 gcd (𝐵 / 2))↑4))
5914, 15nnmulcld 12072 . . . . . . 7 (𝜑 → (𝑀 · 𝑅) ∈ ℕ)
6059nnzd 12471 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑅) ∈ ℤ)
6160, 26gcdcomd 16266 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑅) gcd 𝑆) = (𝑆 gcd (𝑀 · 𝑅)))
6226, 21gcdcomd 16266 . . . . . . . . . 10 (𝜑 → (𝑆 gcd 𝑅) = (𝑅 gcd 𝑆))
6362, 39eqtrd 2776 . . . . . . . . 9 (𝜑 → (𝑆 gcd 𝑅) = 1)
64 rpmul 16409 . . . . . . . . . 10 ((𝑆 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (((𝑆 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑅) = 1) → (𝑆 gcd (𝑀 · 𝑅)) = 1))
6526, 20, 21, 64syl3anc 1371 . . . . . . . . 9 (𝜑 → (((𝑆 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑅) = 1) → (𝑆 gcd (𝑀 · 𝑅)) = 1))
6628, 63, 65mp2and 697 . . . . . . . 8 (𝜑 → (𝑆 gcd (𝑀 · 𝑅)) = 1)
6761, 66eqtrd 2776 . . . . . . 7 (𝜑 → ((𝑀 · 𝑅) gcd 𝑆) = 1)
6859, 16, 19, 67, 49flt4lem4 40523 . . . . . 6 (𝜑 → ((𝑀 · 𝑅) = (((𝑀 · 𝑅) gcd (𝐵 / 2))↑2) ∧ 𝑆 = ((𝑆 gcd (𝐵 / 2))↑2)))
6968simprd 497 . . . . 5 (𝜑𝑆 = ((𝑆 gcd (𝐵 / 2))↑2))
7069oveq1d 7322 . . . 4 (𝜑 → (𝑆↑2) = (((𝑆 gcd (𝐵 / 2))↑2)↑2))
71 gcdnncl 16259 . . . . . . 7 ((𝑆 ∈ ℕ ∧ (𝐵 / 2) ∈ ℕ) → (𝑆 gcd (𝐵 / 2)) ∈ ℕ)
7216, 19, 71syl2anc 585 . . . . . 6 (𝜑 → (𝑆 gcd (𝐵 / 2)) ∈ ℕ)
7372nncnd 12035 . . . . 5 (𝜑 → (𝑆 gcd (𝐵 / 2)) ∈ ℂ)
7473flt4lem 40519 . . . 4 (𝜑 → ((𝑆 gcd (𝐵 / 2))↑4) = (((𝑆 gcd (𝐵 / 2))↑2)↑2))
7570, 74eqtr4d 2779 . . 3 (𝜑 → (𝑆↑2) = ((𝑆 gcd (𝐵 / 2))↑4))
7658, 75oveq12d 7325 . 2 (𝜑 → ((𝑅↑2) + (𝑆↑2)) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))
7711, 35, 763eqtr3d 2784 1 (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104   class class class wbr 5081  cfv 6458  (class class class)co 7307  1c1 10918   + caddc 10920   · cmul 10922  cmin 11251   / cdiv 11678  cn 12019  2c2 12074  4c4 12076  cz 12365  cexp 13828  csqrt 14989  cdvds 16008   gcd cgcd 16246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9245  df-inf 9246  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-n0 12280  df-z 12366  df-uz 12629  df-q 12735  df-rp 12777  df-fz 13286  df-fl 13558  df-mod 13636  df-seq 13768  df-exp 13829  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-dvds 16009  df-gcd 16247  df-prm 16422  df-numer 16484  df-denom 16485
This theorem is referenced by:  flt4lem7  40533
  Copyright terms: Public domain W3C validator