Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5f Structured version   Visualization version   GIF version

Theorem flt4lem5f 40474
Description: Final equation of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. Given 𝐴↑4 + 𝐵↑4 = 𝐶↑2, provide a smaller solution. This satisfies the infinite descent condition. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5a.m 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.n 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.r 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
flt4lem5a.s 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
flt4lem5a.a (𝜑𝐴 ∈ ℕ)
flt4lem5a.b (𝜑𝐵 ∈ ℕ)
flt4lem5a.c (𝜑𝐶 ∈ ℕ)
flt4lem5a.1 (𝜑 → ¬ 2 ∥ 𝐴)
flt4lem5a.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem5a.3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem5f (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))

Proof of Theorem flt4lem5f
StepHypRef Expression
1 flt4lem5a.m . . 3 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
2 flt4lem5a.n . . 3 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
3 flt4lem5a.r . . 3 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
4 flt4lem5a.s . . 3 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
5 flt4lem5a.a . . 3 (𝜑𝐴 ∈ ℕ)
6 flt4lem5a.b . . 3 (𝜑𝐵 ∈ ℕ)
7 flt4lem5a.c . . 3 (𝜑𝐶 ∈ ℕ)
8 flt4lem5a.1 . . 3 (𝜑 → ¬ 2 ∥ 𝐴)
9 flt4lem5a.2 . . 3 (𝜑 → (𝐴 gcd 𝐶) = 1)
10 flt4lem5a.3 . . 3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10flt4lem5d 40472 . 2 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10flt4lem5e 40473 . . . . . 6 (𝜑 → (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ∧ (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ)))
1312simp2d 1141 . . . . 5 (𝜑 → (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ))
1413simp3d 1142 . . . 4 (𝜑𝑀 ∈ ℕ)
1513simp1d 1140 . . . . 5 (𝜑𝑅 ∈ ℕ)
1613simp2d 1141 . . . . 5 (𝜑𝑆 ∈ ℕ)
1715, 16nnmulcld 12009 . . . 4 (𝜑 → (𝑅 · 𝑆) ∈ ℕ)
1812simp3d 1142 . . . . 5 (𝜑 → ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ))
1918simprd 495 . . . 4 (𝜑 → (𝐵 / 2) ∈ ℕ)
2014nnzd 12407 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2115nnzd 12407 . . . . . . 7 (𝜑𝑅 ∈ ℤ)
2220, 21gcdcomd 16202 . . . . . 6 (𝜑 → (𝑀 gcd 𝑅) = (𝑅 gcd 𝑀))
2312simp1d 1140 . . . . . . 7 (𝜑 → ((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))
2423simp2d 1141 . . . . . 6 (𝜑 → (𝑅 gcd 𝑀) = 1)
2522, 24eqtrd 2779 . . . . 5 (𝜑 → (𝑀 gcd 𝑅) = 1)
2616nnzd 12407 . . . . . . 7 (𝜑𝑆 ∈ ℤ)
2720, 26gcdcomd 16202 . . . . . 6 (𝜑 → (𝑀 gcd 𝑆) = (𝑆 gcd 𝑀))
2823simp3d 1142 . . . . . 6 (𝜑 → (𝑆 gcd 𝑀) = 1)
2927, 28eqtrd 2779 . . . . 5 (𝜑 → (𝑀 gcd 𝑆) = 1)
30 rpmul 16345 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (((𝑀 gcd 𝑅) = 1 ∧ (𝑀 gcd 𝑆) = 1) → (𝑀 gcd (𝑅 · 𝑆)) = 1))
3120, 21, 26, 30syl3anc 1369 . . . . 5 (𝜑 → (((𝑀 gcd 𝑅) = 1 ∧ (𝑀 gcd 𝑆) = 1) → (𝑀 gcd (𝑅 · 𝑆)) = 1))
3225, 29, 31mp2and 695 . . . 4 (𝜑 → (𝑀 gcd (𝑅 · 𝑆)) = 1)
3318simpld 494 . . . 4 (𝜑 → (𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2))
3414, 17, 19, 32, 33flt4lem4 40466 . . 3 (𝜑 → (𝑀 = ((𝑀 gcd (𝐵 / 2))↑2) ∧ (𝑅 · 𝑆) = (((𝑅 · 𝑆) gcd (𝐵 / 2))↑2)))
3534simpld 494 . 2 (𝜑𝑀 = ((𝑀 gcd (𝐵 / 2))↑2))
3614, 16nnmulcld 12009 . . . . . . 7 (𝜑 → (𝑀 · 𝑆) ∈ ℕ)
3736nnzd 12407 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑆) ∈ ℤ)
3837, 21gcdcomd 16202 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑆) gcd 𝑅) = (𝑅 gcd (𝑀 · 𝑆)))
3923simp1d 1140 . . . . . . . . 9 (𝜑 → (𝑅 gcd 𝑆) = 1)
40 rpmul 16345 . . . . . . . . . 10 ((𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (((𝑅 gcd 𝑀) = 1 ∧ (𝑅 gcd 𝑆) = 1) → (𝑅 gcd (𝑀 · 𝑆)) = 1))
4121, 20, 26, 40syl3anc 1369 . . . . . . . . 9 (𝜑 → (((𝑅 gcd 𝑀) = 1 ∧ (𝑅 gcd 𝑆) = 1) → (𝑅 gcd (𝑀 · 𝑆)) = 1))
4224, 39, 41mp2and 695 . . . . . . . 8 (𝜑 → (𝑅 gcd (𝑀 · 𝑆)) = 1)
4338, 42eqtrd 2779 . . . . . . 7 (𝜑 → ((𝑀 · 𝑆) gcd 𝑅) = 1)
4414nncnd 11972 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4516nncnd 11972 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
4615nncnd 11972 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
4744, 45, 46mul32d 11168 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑆) · 𝑅) = ((𝑀 · 𝑅) · 𝑆))
4844, 46, 45mulassd 10982 . . . . . . . . 9 (𝜑 → ((𝑀 · 𝑅) · 𝑆) = (𝑀 · (𝑅 · 𝑆)))
4948, 33eqtrd 2779 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑅) · 𝑆) = ((𝐵 / 2)↑2))
5047, 49eqtrd 2779 . . . . . . 7 (𝜑 → ((𝑀 · 𝑆) · 𝑅) = ((𝐵 / 2)↑2))
5136, 15, 19, 43, 50flt4lem4 40466 . . . . . 6 (𝜑 → ((𝑀 · 𝑆) = (((𝑀 · 𝑆) gcd (𝐵 / 2))↑2) ∧ 𝑅 = ((𝑅 gcd (𝐵 / 2))↑2)))
5251simprd 495 . . . . 5 (𝜑𝑅 = ((𝑅 gcd (𝐵 / 2))↑2))
5352oveq1d 7283 . . . 4 (𝜑 → (𝑅↑2) = (((𝑅 gcd (𝐵 / 2))↑2)↑2))
54 gcdnncl 16195 . . . . . . 7 ((𝑅 ∈ ℕ ∧ (𝐵 / 2) ∈ ℕ) → (𝑅 gcd (𝐵 / 2)) ∈ ℕ)
5515, 19, 54syl2anc 583 . . . . . 6 (𝜑 → (𝑅 gcd (𝐵 / 2)) ∈ ℕ)
5655nncnd 11972 . . . . 5 (𝜑 → (𝑅 gcd (𝐵 / 2)) ∈ ℂ)
5756flt4lem 40462 . . . 4 (𝜑 → ((𝑅 gcd (𝐵 / 2))↑4) = (((𝑅 gcd (𝐵 / 2))↑2)↑2))
5853, 57eqtr4d 2782 . . 3 (𝜑 → (𝑅↑2) = ((𝑅 gcd (𝐵 / 2))↑4))
5914, 15nnmulcld 12009 . . . . . . 7 (𝜑 → (𝑀 · 𝑅) ∈ ℕ)
6059nnzd 12407 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑅) ∈ ℤ)
6160, 26gcdcomd 16202 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑅) gcd 𝑆) = (𝑆 gcd (𝑀 · 𝑅)))
6226, 21gcdcomd 16202 . . . . . . . . . 10 (𝜑 → (𝑆 gcd 𝑅) = (𝑅 gcd 𝑆))
6362, 39eqtrd 2779 . . . . . . . . 9 (𝜑 → (𝑆 gcd 𝑅) = 1)
64 rpmul 16345 . . . . . . . . . 10 ((𝑆 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (((𝑆 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑅) = 1) → (𝑆 gcd (𝑀 · 𝑅)) = 1))
6526, 20, 21, 64syl3anc 1369 . . . . . . . . 9 (𝜑 → (((𝑆 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑅) = 1) → (𝑆 gcd (𝑀 · 𝑅)) = 1))
6628, 63, 65mp2and 695 . . . . . . . 8 (𝜑 → (𝑆 gcd (𝑀 · 𝑅)) = 1)
6761, 66eqtrd 2779 . . . . . . 7 (𝜑 → ((𝑀 · 𝑅) gcd 𝑆) = 1)
6859, 16, 19, 67, 49flt4lem4 40466 . . . . . 6 (𝜑 → ((𝑀 · 𝑅) = (((𝑀 · 𝑅) gcd (𝐵 / 2))↑2) ∧ 𝑆 = ((𝑆 gcd (𝐵 / 2))↑2)))
6968simprd 495 . . . . 5 (𝜑𝑆 = ((𝑆 gcd (𝐵 / 2))↑2))
7069oveq1d 7283 . . . 4 (𝜑 → (𝑆↑2) = (((𝑆 gcd (𝐵 / 2))↑2)↑2))
71 gcdnncl 16195 . . . . . . 7 ((𝑆 ∈ ℕ ∧ (𝐵 / 2) ∈ ℕ) → (𝑆 gcd (𝐵 / 2)) ∈ ℕ)
7216, 19, 71syl2anc 583 . . . . . 6 (𝜑 → (𝑆 gcd (𝐵 / 2)) ∈ ℕ)
7372nncnd 11972 . . . . 5 (𝜑 → (𝑆 gcd (𝐵 / 2)) ∈ ℂ)
7473flt4lem 40462 . . . 4 (𝜑 → ((𝑆 gcd (𝐵 / 2))↑4) = (((𝑆 gcd (𝐵 / 2))↑2)↑2))
7570, 74eqtr4d 2782 . . 3 (𝜑 → (𝑆↑2) = ((𝑆 gcd (𝐵 / 2))↑4))
7658, 75oveq12d 7286 . 2 (𝜑 → ((𝑅↑2) + (𝑆↑2)) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))
7711, 35, 763eqtr3d 2787 1 (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1541  wcel 2109   class class class wbr 5078  cfv 6430  (class class class)co 7268  1c1 10856   + caddc 10858   · cmul 10860  cmin 11188   / cdiv 11615  cn 11956  2c2 12011  4c4 12013  cz 12302  cexp 13763  csqrt 14925  cdvds 15944   gcd cgcd 16182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-rp 12713  df-fz 13222  df-fl 13493  df-mod 13571  df-seq 13703  df-exp 13764  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-dvds 15945  df-gcd 16183  df-prm 16358  df-numer 16420  df-denom 16421
This theorem is referenced by:  flt4lem7  40476
  Copyright terms: Public domain W3C validator