Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5f Structured version   Visualization version   GIF version

Theorem flt4lem5f 40244
Description: Final equation of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. Given 𝐴↑4 + 𝐵↑4 = 𝐶↑2, provide a smaller solution. This satisfies the infinite descent condition. (Contributed by SN, 24-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5a.m 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.n 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.r 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
flt4lem5a.s 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
flt4lem5a.a (𝜑𝐴 ∈ ℕ)
flt4lem5a.b (𝜑𝐵 ∈ ℕ)
flt4lem5a.c (𝜑𝐶 ∈ ℕ)
flt4lem5a.1 (𝜑 → ¬ 2 ∥ 𝐴)
flt4lem5a.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem5a.3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem5f (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))

Proof of Theorem flt4lem5f
StepHypRef Expression
1 flt4lem5a.m . . 3 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
2 flt4lem5a.n . . 3 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
3 flt4lem5a.r . . 3 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
4 flt4lem5a.s . . 3 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
5 flt4lem5a.a . . 3 (𝜑𝐴 ∈ ℕ)
6 flt4lem5a.b . . 3 (𝜑𝐵 ∈ ℕ)
7 flt4lem5a.c . . 3 (𝜑𝐶 ∈ ℕ)
8 flt4lem5a.1 . . 3 (𝜑 → ¬ 2 ∥ 𝐴)
9 flt4lem5a.2 . . 3 (𝜑 → (𝐴 gcd 𝐶) = 1)
10 flt4lem5a.3 . . 3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10flt4lem5d 40242 . 2 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10flt4lem5e 40243 . . . . . 6 (𝜑 → (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ∧ (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ)))
1312simp2d 1145 . . . . 5 (𝜑 → (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ))
1413simp3d 1146 . . . 4 (𝜑𝑀 ∈ ℕ)
1513simp1d 1144 . . . . 5 (𝜑𝑅 ∈ ℕ)
1613simp2d 1145 . . . . 5 (𝜑𝑆 ∈ ℕ)
1715, 16nnmulcld 11912 . . . 4 (𝜑 → (𝑅 · 𝑆) ∈ ℕ)
1812simp3d 1146 . . . . 5 (𝜑 → ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ))
1918simprd 499 . . . 4 (𝜑 → (𝐵 / 2) ∈ ℕ)
2014nnzd 12310 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
2115nnzd 12310 . . . . . . 7 (𝜑𝑅 ∈ ℤ)
2220, 21gcdcomd 16105 . . . . . 6 (𝜑 → (𝑀 gcd 𝑅) = (𝑅 gcd 𝑀))
2312simp1d 1144 . . . . . . 7 (𝜑 → ((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))
2423simp2d 1145 . . . . . 6 (𝜑 → (𝑅 gcd 𝑀) = 1)
2522, 24eqtrd 2779 . . . . 5 (𝜑 → (𝑀 gcd 𝑅) = 1)
2616nnzd 12310 . . . . . . 7 (𝜑𝑆 ∈ ℤ)
2720, 26gcdcomd 16105 . . . . . 6 (𝜑 → (𝑀 gcd 𝑆) = (𝑆 gcd 𝑀))
2823simp3d 1146 . . . . . 6 (𝜑 → (𝑆 gcd 𝑀) = 1)
2927, 28eqtrd 2779 . . . . 5 (𝜑 → (𝑀 gcd 𝑆) = 1)
30 rpmul 16248 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (((𝑀 gcd 𝑅) = 1 ∧ (𝑀 gcd 𝑆) = 1) → (𝑀 gcd (𝑅 · 𝑆)) = 1))
3120, 21, 26, 30syl3anc 1373 . . . . 5 (𝜑 → (((𝑀 gcd 𝑅) = 1 ∧ (𝑀 gcd 𝑆) = 1) → (𝑀 gcd (𝑅 · 𝑆)) = 1))
3225, 29, 31mp2and 699 . . . 4 (𝜑 → (𝑀 gcd (𝑅 · 𝑆)) = 1)
3318simpld 498 . . . 4 (𝜑 → (𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2))
3414, 17, 19, 32, 33flt4lem4 40236 . . 3 (𝜑 → (𝑀 = ((𝑀 gcd (𝐵 / 2))↑2) ∧ (𝑅 · 𝑆) = (((𝑅 · 𝑆) gcd (𝐵 / 2))↑2)))
3534simpld 498 . 2 (𝜑𝑀 = ((𝑀 gcd (𝐵 / 2))↑2))
3614, 16nnmulcld 11912 . . . . . . 7 (𝜑 → (𝑀 · 𝑆) ∈ ℕ)
3736nnzd 12310 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑆) ∈ ℤ)
3837, 21gcdcomd 16105 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑆) gcd 𝑅) = (𝑅 gcd (𝑀 · 𝑆)))
3923simp1d 1144 . . . . . . . . 9 (𝜑 → (𝑅 gcd 𝑆) = 1)
40 rpmul 16248 . . . . . . . . . 10 ((𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑆 ∈ ℤ) → (((𝑅 gcd 𝑀) = 1 ∧ (𝑅 gcd 𝑆) = 1) → (𝑅 gcd (𝑀 · 𝑆)) = 1))
4121, 20, 26, 40syl3anc 1373 . . . . . . . . 9 (𝜑 → (((𝑅 gcd 𝑀) = 1 ∧ (𝑅 gcd 𝑆) = 1) → (𝑅 gcd (𝑀 · 𝑆)) = 1))
4224, 39, 41mp2and 699 . . . . . . . 8 (𝜑 → (𝑅 gcd (𝑀 · 𝑆)) = 1)
4338, 42eqtrd 2779 . . . . . . 7 (𝜑 → ((𝑀 · 𝑆) gcd 𝑅) = 1)
4414nncnd 11875 . . . . . . . . 9 (𝜑𝑀 ∈ ℂ)
4516nncnd 11875 . . . . . . . . 9 (𝜑𝑆 ∈ ℂ)
4615nncnd 11875 . . . . . . . . 9 (𝜑𝑅 ∈ ℂ)
4744, 45, 46mul32d 11071 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑆) · 𝑅) = ((𝑀 · 𝑅) · 𝑆))
4844, 46, 45mulassd 10885 . . . . . . . . 9 (𝜑 → ((𝑀 · 𝑅) · 𝑆) = (𝑀 · (𝑅 · 𝑆)))
4948, 33eqtrd 2779 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑅) · 𝑆) = ((𝐵 / 2)↑2))
5047, 49eqtrd 2779 . . . . . . 7 (𝜑 → ((𝑀 · 𝑆) · 𝑅) = ((𝐵 / 2)↑2))
5136, 15, 19, 43, 50flt4lem4 40236 . . . . . 6 (𝜑 → ((𝑀 · 𝑆) = (((𝑀 · 𝑆) gcd (𝐵 / 2))↑2) ∧ 𝑅 = ((𝑅 gcd (𝐵 / 2))↑2)))
5251simprd 499 . . . . 5 (𝜑𝑅 = ((𝑅 gcd (𝐵 / 2))↑2))
5352oveq1d 7249 . . . 4 (𝜑 → (𝑅↑2) = (((𝑅 gcd (𝐵 / 2))↑2)↑2))
54 gcdnncl 16098 . . . . . . 7 ((𝑅 ∈ ℕ ∧ (𝐵 / 2) ∈ ℕ) → (𝑅 gcd (𝐵 / 2)) ∈ ℕ)
5515, 19, 54syl2anc 587 . . . . . 6 (𝜑 → (𝑅 gcd (𝐵 / 2)) ∈ ℕ)
5655nncnd 11875 . . . . 5 (𝜑 → (𝑅 gcd (𝐵 / 2)) ∈ ℂ)
5756flt4lem 40232 . . . 4 (𝜑 → ((𝑅 gcd (𝐵 / 2))↑4) = (((𝑅 gcd (𝐵 / 2))↑2)↑2))
5853, 57eqtr4d 2782 . . 3 (𝜑 → (𝑅↑2) = ((𝑅 gcd (𝐵 / 2))↑4))
5914, 15nnmulcld 11912 . . . . . . 7 (𝜑 → (𝑀 · 𝑅) ∈ ℕ)
6059nnzd 12310 . . . . . . . . 9 (𝜑 → (𝑀 · 𝑅) ∈ ℤ)
6160, 26gcdcomd 16105 . . . . . . . 8 (𝜑 → ((𝑀 · 𝑅) gcd 𝑆) = (𝑆 gcd (𝑀 · 𝑅)))
6226, 21gcdcomd 16105 . . . . . . . . . 10 (𝜑 → (𝑆 gcd 𝑅) = (𝑅 gcd 𝑆))
6362, 39eqtrd 2779 . . . . . . . . 9 (𝜑 → (𝑆 gcd 𝑅) = 1)
64 rpmul 16248 . . . . . . . . . 10 ((𝑆 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑅 ∈ ℤ) → (((𝑆 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑅) = 1) → (𝑆 gcd (𝑀 · 𝑅)) = 1))
6526, 20, 21, 64syl3anc 1373 . . . . . . . . 9 (𝜑 → (((𝑆 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑅) = 1) → (𝑆 gcd (𝑀 · 𝑅)) = 1))
6628, 63, 65mp2and 699 . . . . . . . 8 (𝜑 → (𝑆 gcd (𝑀 · 𝑅)) = 1)
6761, 66eqtrd 2779 . . . . . . 7 (𝜑 → ((𝑀 · 𝑅) gcd 𝑆) = 1)
6859, 16, 19, 67, 49flt4lem4 40236 . . . . . 6 (𝜑 → ((𝑀 · 𝑅) = (((𝑀 · 𝑅) gcd (𝐵 / 2))↑2) ∧ 𝑆 = ((𝑆 gcd (𝐵 / 2))↑2)))
6968simprd 499 . . . . 5 (𝜑𝑆 = ((𝑆 gcd (𝐵 / 2))↑2))
7069oveq1d 7249 . . . 4 (𝜑 → (𝑆↑2) = (((𝑆 gcd (𝐵 / 2))↑2)↑2))
71 gcdnncl 16098 . . . . . . 7 ((𝑆 ∈ ℕ ∧ (𝐵 / 2) ∈ ℕ) → (𝑆 gcd (𝐵 / 2)) ∈ ℕ)
7216, 19, 71syl2anc 587 . . . . . 6 (𝜑 → (𝑆 gcd (𝐵 / 2)) ∈ ℕ)
7372nncnd 11875 . . . . 5 (𝜑 → (𝑆 gcd (𝐵 / 2)) ∈ ℂ)
7473flt4lem 40232 . . . 4 (𝜑 → ((𝑆 gcd (𝐵 / 2))↑4) = (((𝑆 gcd (𝐵 / 2))↑2)↑2))
7570, 74eqtr4d 2782 . . 3 (𝜑 → (𝑆↑2) = ((𝑆 gcd (𝐵 / 2))↑4))
7658, 75oveq12d 7252 . 2 (𝜑 → ((𝑅↑2) + (𝑆↑2)) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))
7711, 35, 763eqtr3d 2787 1 (𝜑 → ((𝑀 gcd (𝐵 / 2))↑2) = (((𝑅 gcd (𝐵 / 2))↑4) + ((𝑆 gcd (𝐵 / 2))↑4)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112   class class class wbr 5069  cfv 6400  (class class class)co 7234  1c1 10759   + caddc 10761   · cmul 10763  cmin 11091   / cdiv 11518  cn 11859  2c2 11914  4c4 11916  cz 12205  cexp 13666  csqrt 14828  cdvds 15847   gcd cgcd 16085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5208  ax-nul 5215  ax-pow 5274  ax-pr 5338  ax-un 7544  ax-cnex 10814  ax-resscn 10815  ax-1cn 10816  ax-icn 10817  ax-addcl 10818  ax-addrcl 10819  ax-mulcl 10820  ax-mulrcl 10821  ax-mulcom 10822  ax-addass 10823  ax-mulass 10824  ax-distr 10825  ax-i2m1 10826  ax-1ne0 10827  ax-1rid 10828  ax-rnegex 10829  ax-rrecex 10830  ax-cnre 10831  ax-pre-lttri 10832  ax-pre-lttrn 10833  ax-pre-ltadd 10834  ax-pre-mulgt0 10835  ax-pre-sup 10836
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4456  df-pw 4531  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4836  df-iun 4922  df-br 5070  df-opab 5132  df-mpt 5152  df-tr 5178  df-id 5471  df-eprel 5477  df-po 5485  df-so 5486  df-fr 5526  df-we 5528  df-xp 5574  df-rel 5575  df-cnv 5576  df-co 5577  df-dm 5578  df-rn 5579  df-res 5580  df-ima 5581  df-pred 6178  df-ord 6236  df-on 6237  df-lim 6238  df-suc 6239  df-iota 6358  df-fun 6402  df-fn 6403  df-f 6404  df-f1 6405  df-fo 6406  df-f1o 6407  df-fv 6408  df-riota 7191  df-ov 7237  df-oprab 7238  df-mpo 7239  df-om 7666  df-1st 7782  df-2nd 7783  df-wrecs 8070  df-recs 8131  df-rdg 8169  df-1o 8225  df-2o 8226  df-er 8414  df-en 8650  df-dom 8651  df-sdom 8652  df-fin 8653  df-sup 9087  df-inf 9088  df-pnf 10898  df-mnf 10899  df-xr 10900  df-ltxr 10901  df-le 10902  df-sub 11093  df-neg 11094  df-div 11519  df-nn 11860  df-2 11922  df-3 11923  df-4 11924  df-n0 12120  df-z 12206  df-uz 12468  df-q 12574  df-rp 12616  df-fz 13125  df-fl 13396  df-mod 13474  df-seq 13606  df-exp 13667  df-cj 14694  df-re 14695  df-im 14696  df-sqrt 14830  df-abs 14831  df-dvds 15848  df-gcd 16086  df-prm 16261  df-numer 16323  df-denom 16324
This theorem is referenced by:  flt4lem7  40246
  Copyright terms: Public domain W3C validator