Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itschlc0yqe Structured version   Visualization version   GIF version

Theorem itschlc0yqe 48024
Description: Lemma for itsclc0 48035. Quadratic equation for the y-coordinate of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023.)
Hypotheses
Ref Expression
itscnhlc0yqe.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itscnhlc0yqe.t 𝑇 = -(2 · (𝐵 · 𝐶))
itscnhlc0yqe.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
Assertion
Ref Expression
itschlc0yqe ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))

Proof of Theorem itschlc0yqe
StepHypRef Expression
1 oveq2 7427 . . . . . . . . . . . . . . 15 (𝐶 = (𝐵 · 𝑌) → (𝐵 · 𝐶) = (𝐵 · (𝐵 · 𝑌)))
21oveq2d 7435 . . . . . . . . . . . . . 14 (𝐶 = (𝐵 · 𝑌) → (2 · (𝐵 · 𝐶)) = (2 · (𝐵 · (𝐵 · 𝑌))))
32oveq1d 7434 . . . . . . . . . . . . 13 (𝐶 = (𝐵 · 𝑌) → ((2 · (𝐵 · 𝐶)) · 𝑌) = ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌))
43negeqd 11491 . . . . . . . . . . . 12 (𝐶 = (𝐵 · 𝑌) → -((2 · (𝐵 · 𝐶)) · 𝑌) = -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌))
5 oveq1 7426 . . . . . . . . . . . 12 (𝐶 = (𝐵 · 𝑌) → (𝐶↑2) = ((𝐵 · 𝑌)↑2))
64, 5oveq12d 7437 . . . . . . . . . . 11 (𝐶 = (𝐵 · 𝑌) → (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2)) = (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2)))
76oveq2d 7435 . . . . . . . . . 10 (𝐶 = (𝐵 · 𝑌) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))))
87eqcoms 2733 . . . . . . . . 9 ((𝐵 · 𝑌) = 𝐶 → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))))
9 simp12 1201 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℝ)
109recnd 11279 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ)
11 simp3r 1199 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℝ)
1211recnd 11279 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℂ)
1310, 12mulcld 11271 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝑌) ∈ ℂ)
1413sqcld 14149 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑌)↑2) ∈ ℂ)
15 2cnd 12328 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 2 ∈ ℂ)
1610, 13mulcld 11271 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · (𝐵 · 𝑌)) ∈ ℂ)
1715, 16mulcld 11271 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · (𝐵 · (𝐵 · 𝑌))) ∈ ℂ)
1817, 12mulcld 11271 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) ∈ ℂ)
1918negcld 11595 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) ∈ ℂ)
20 add32r 11470 . . . . . . . . . . 11 ((((𝐵 · 𝑌)↑2) ∈ ℂ ∧ -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) ∈ ℂ ∧ ((𝐵 · 𝑌)↑2) ∈ ℂ) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))) = ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) + -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)))
2114, 19, 14, 20syl3anc 1368 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))) = ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) + -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)))
2214, 14addcld 11270 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) ∈ ℂ)
2322, 18negsubd 11614 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) + -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)) = ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) − ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)))
2415, 16, 12mulassd 11274 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) = (2 · ((𝐵 · (𝐵 · 𝑌)) · 𝑌)))
2510, 13, 12mul32d 11461 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · (𝐵 · 𝑌)) · 𝑌) = ((𝐵 · 𝑌) · (𝐵 · 𝑌)))
2613sqvald 14148 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑌)↑2) = ((𝐵 · 𝑌) · (𝐵 · 𝑌)))
2725, 26eqtr4d 2768 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · (𝐵 · 𝑌)) · 𝑌) = ((𝐵 · 𝑌)↑2))
2827oveq2d 7435 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · ((𝐵 · (𝐵 · 𝑌)) · 𝑌)) = (2 · ((𝐵 · 𝑌)↑2)))
29142timesd 12493 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · ((𝐵 · 𝑌)↑2)) = (((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)))
3024, 28, 293eqtrrd 2770 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) = ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌))
3122, 30subeq0bd 11677 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) − ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)) = 0)
3223, 31eqtrd 2765 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) + -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)) = 0)
3321, 32eqtrd 2765 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))) = 0)
348, 33sylan9eqr 2787 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (𝐵 · 𝑌) = 𝐶) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = 0)
3534ex 411 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑌) = 𝐶 → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = 0))
36 simp3l 1198 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℝ)
3736recnd 11279 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℂ)
3837mul02d 11449 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (0 · 𝑋) = 0)
3938oveq1d 7434 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((0 · 𝑋) + (𝐵 · 𝑌)) = (0 + (𝐵 · 𝑌)))
4013addlidd 11452 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (0 + (𝐵 · 𝑌)) = (𝐵 · 𝑌))
4139, 40eqtrd 2765 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((0 · 𝑋) + (𝐵 · 𝑌)) = (𝐵 · 𝑌))
4241eqeq1d 2727 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ (𝐵 · 𝑌) = 𝐶))
4310sqcld 14149 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵↑2) ∈ ℂ)
4443addlidd 11452 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (0 + (𝐵↑2)) = (𝐵↑2))
4544oveq1d 7434 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((0 + (𝐵↑2)) · (𝑌↑2)) = ((𝐵↑2) · (𝑌↑2)))
4610, 12sqmuld 14163 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑌)↑2) = ((𝐵↑2) · (𝑌↑2)))
4745, 46eqtr4d 2768 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((0 + (𝐵↑2)) · (𝑌↑2)) = ((𝐵 · 𝑌)↑2))
48 simp13 1202 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℝ)
4948recnd 11279 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℂ)
5010, 49mulcld 11271 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℂ)
5115, 50mulcld 11271 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
5251, 12mulneg1d 11704 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (-(2 · (𝐵 · 𝐶)) · 𝑌) = -((2 · (𝐵 · 𝐶)) · 𝑌))
53 rpcn 13024 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
5453sqcld 14149 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
5554mul02d 11449 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (0 · (𝑅↑2)) = 0)
5655oveq2d 7435 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝐶↑2) − (0 · (𝑅↑2))) = ((𝐶↑2) − 0))
57563ad2ant2 1131 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − (0 · (𝑅↑2))) = ((𝐶↑2) − 0))
5849sqcld 14149 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶↑2) ∈ ℂ)
5958subid1d 11597 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − 0) = (𝐶↑2))
6057, 59eqtrd 2765 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − (0 · (𝑅↑2))) = (𝐶↑2))
6152, 60oveq12d 7437 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2)))) = (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2)))
6247, 61oveq12d 7437 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))))
6362eqeq1d 2727 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0 ↔ (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = 0))
6435, 42, 633imtr4d 293 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))
65643exp 1116 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑅 ∈ ℝ+ → ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))))
66653adant1r 1174 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑅 ∈ ℝ+ → ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))))
67663imp 1108 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))
6867adantld 489 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))
69 oveq1 7426 . . . . . . . . 9 (𝐴 = 0 → (𝐴 · 𝑋) = (0 · 𝑋))
7069oveq1d 7434 . . . . . . . 8 (𝐴 = 0 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((0 · 𝑋) + (𝐵 · 𝑌)))
7170eqeq1d 2727 . . . . . . 7 (𝐴 = 0 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶))
7271anbi2d 628 . . . . . 6 (𝐴 = 0 → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) ↔ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)))
73 itscnhlc0yqe.q . . . . . . . . . 10 𝑄 = ((𝐴↑2) + (𝐵↑2))
74 sq0i 14197 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴↑2) = 0)
7574oveq1d 7434 . . . . . . . . . 10 (𝐴 = 0 → ((𝐴↑2) + (𝐵↑2)) = (0 + (𝐵↑2)))
7673, 75eqtrid 2777 . . . . . . . . 9 (𝐴 = 0 → 𝑄 = (0 + (𝐵↑2)))
7776oveq1d 7434 . . . . . . . 8 (𝐴 = 0 → (𝑄 · (𝑌↑2)) = ((0 + (𝐵↑2)) · (𝑌↑2)))
78 itscnhlc0yqe.t . . . . . . . . . . 11 𝑇 = -(2 · (𝐵 · 𝐶))
7978oveq1i 7429 . . . . . . . . . 10 (𝑇 · 𝑌) = (-(2 · (𝐵 · 𝐶)) · 𝑌)
8079a1i 11 . . . . . . . . 9 (𝐴 = 0 → (𝑇 · 𝑌) = (-(2 · (𝐵 · 𝐶)) · 𝑌))
81 itscnhlc0yqe.u . . . . . . . . . 10 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
8274oveq1d 7434 . . . . . . . . . . 11 (𝐴 = 0 → ((𝐴↑2) · (𝑅↑2)) = (0 · (𝑅↑2)))
8382oveq2d 7435 . . . . . . . . . 10 (𝐴 = 0 → ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) = ((𝐶↑2) − (0 · (𝑅↑2))))
8481, 83eqtrid 2777 . . . . . . . . 9 (𝐴 = 0 → 𝑈 = ((𝐶↑2) − (0 · (𝑅↑2))))
8580, 84oveq12d 7437 . . . . . . . 8 (𝐴 = 0 → ((𝑇 · 𝑌) + 𝑈) = ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2)))))
8677, 85oveq12d 7437 . . . . . . 7 (𝐴 = 0 → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))))
8786eqeq1d 2727 . . . . . 6 (𝐴 = 0 → (((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0 ↔ (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))
8872, 87imbi12d 343 . . . . 5 (𝐴 = 0 → (((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ↔ ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0)))
8988adantl 480 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ↔ ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0)))
90893ad2ant1 1130 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ↔ ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0)))
91903ad2ant1 1130 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ↔ ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0)))
9268, 91mpbird 256 1 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  (class class class)co 7419  cc 11143  cr 11144  0cc0 11145   + caddc 11148   · cmul 11150  cmin 11481  -cneg 11482  2c2 12305  +crp 13014  cexp 14067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-seq 14008  df-exp 14068
This theorem is referenced by:  itsclc0yqe  48025
  Copyright terms: Public domain W3C validator