Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itschlc0yqe Structured version   Visualization version   GIF version

Theorem itschlc0yqe 48860
Description: Lemma for itsclc0 48871. Quadratic equation for the y-coordinate of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023.)
Hypotheses
Ref Expression
itscnhlc0yqe.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itscnhlc0yqe.t 𝑇 = -(2 · (𝐵 · 𝐶))
itscnhlc0yqe.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
Assertion
Ref Expression
itschlc0yqe ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))

Proof of Theorem itschlc0yqe
StepHypRef Expression
1 oveq2 7354 . . . . . . . . . . . . . . 15 (𝐶 = (𝐵 · 𝑌) → (𝐵 · 𝐶) = (𝐵 · (𝐵 · 𝑌)))
21oveq2d 7362 . . . . . . . . . . . . . 14 (𝐶 = (𝐵 · 𝑌) → (2 · (𝐵 · 𝐶)) = (2 · (𝐵 · (𝐵 · 𝑌))))
32oveq1d 7361 . . . . . . . . . . . . 13 (𝐶 = (𝐵 · 𝑌) → ((2 · (𝐵 · 𝐶)) · 𝑌) = ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌))
43negeqd 11354 . . . . . . . . . . . 12 (𝐶 = (𝐵 · 𝑌) → -((2 · (𝐵 · 𝐶)) · 𝑌) = -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌))
5 oveq1 7353 . . . . . . . . . . . 12 (𝐶 = (𝐵 · 𝑌) → (𝐶↑2) = ((𝐵 · 𝑌)↑2))
64, 5oveq12d 7364 . . . . . . . . . . 11 (𝐶 = (𝐵 · 𝑌) → (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2)) = (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2)))
76oveq2d 7362 . . . . . . . . . 10 (𝐶 = (𝐵 · 𝑌) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))))
87eqcoms 2739 . . . . . . . . 9 ((𝐵 · 𝑌) = 𝐶 → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))))
9 simp12 1205 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℝ)
109recnd 11140 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ)
11 simp3r 1203 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℝ)
1211recnd 11140 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℂ)
1310, 12mulcld 11132 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝑌) ∈ ℂ)
1413sqcld 14051 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑌)↑2) ∈ ℂ)
15 2cnd 12203 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 2 ∈ ℂ)
1610, 13mulcld 11132 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · (𝐵 · 𝑌)) ∈ ℂ)
1715, 16mulcld 11132 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · (𝐵 · (𝐵 · 𝑌))) ∈ ℂ)
1817, 12mulcld 11132 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) ∈ ℂ)
1918negcld 11459 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) ∈ ℂ)
20 add32r 11333 . . . . . . . . . . 11 ((((𝐵 · 𝑌)↑2) ∈ ℂ ∧ -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) ∈ ℂ ∧ ((𝐵 · 𝑌)↑2) ∈ ℂ) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))) = ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) + -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)))
2114, 19, 14, 20syl3anc 1373 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))) = ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) + -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)))
2214, 14addcld 11131 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) ∈ ℂ)
2322, 18negsubd 11478 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) + -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)) = ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) − ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)))
2415, 16, 12mulassd 11135 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) = (2 · ((𝐵 · (𝐵 · 𝑌)) · 𝑌)))
2510, 13, 12mul32d 11323 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · (𝐵 · 𝑌)) · 𝑌) = ((𝐵 · 𝑌) · (𝐵 · 𝑌)))
2613sqvald 14050 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑌)↑2) = ((𝐵 · 𝑌) · (𝐵 · 𝑌)))
2725, 26eqtr4d 2769 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · (𝐵 · 𝑌)) · 𝑌) = ((𝐵 · 𝑌)↑2))
2827oveq2d 7362 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · ((𝐵 · (𝐵 · 𝑌)) · 𝑌)) = (2 · ((𝐵 · 𝑌)↑2)))
29142timesd 12364 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · ((𝐵 · 𝑌)↑2)) = (((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)))
3024, 28, 293eqtrrd 2771 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) = ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌))
3122, 30subeq0bd 11543 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) − ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)) = 0)
3223, 31eqtrd 2766 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) + -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)) = 0)
3321, 32eqtrd 2766 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))) = 0)
348, 33sylan9eqr 2788 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (𝐵 · 𝑌) = 𝐶) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = 0)
3534ex 412 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑌) = 𝐶 → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = 0))
36 simp3l 1202 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℝ)
3736recnd 11140 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℂ)
3837mul02d 11311 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (0 · 𝑋) = 0)
3938oveq1d 7361 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((0 · 𝑋) + (𝐵 · 𝑌)) = (0 + (𝐵 · 𝑌)))
4013addlidd 11314 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (0 + (𝐵 · 𝑌)) = (𝐵 · 𝑌))
4139, 40eqtrd 2766 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((0 · 𝑋) + (𝐵 · 𝑌)) = (𝐵 · 𝑌))
4241eqeq1d 2733 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ (𝐵 · 𝑌) = 𝐶))
4310sqcld 14051 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵↑2) ∈ ℂ)
4443addlidd 11314 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (0 + (𝐵↑2)) = (𝐵↑2))
4544oveq1d 7361 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((0 + (𝐵↑2)) · (𝑌↑2)) = ((𝐵↑2) · (𝑌↑2)))
4610, 12sqmuld 14065 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑌)↑2) = ((𝐵↑2) · (𝑌↑2)))
4745, 46eqtr4d 2769 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((0 + (𝐵↑2)) · (𝑌↑2)) = ((𝐵 · 𝑌)↑2))
48 simp13 1206 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℝ)
4948recnd 11140 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℂ)
5010, 49mulcld 11132 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℂ)
5115, 50mulcld 11132 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
5251, 12mulneg1d 11570 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (-(2 · (𝐵 · 𝐶)) · 𝑌) = -((2 · (𝐵 · 𝐶)) · 𝑌))
53 rpcn 12901 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
5453sqcld 14051 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
5554mul02d 11311 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (0 · (𝑅↑2)) = 0)
5655oveq2d 7362 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝐶↑2) − (0 · (𝑅↑2))) = ((𝐶↑2) − 0))
57563ad2ant2 1134 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − (0 · (𝑅↑2))) = ((𝐶↑2) − 0))
5849sqcld 14051 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶↑2) ∈ ℂ)
5958subid1d 11461 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − 0) = (𝐶↑2))
6057, 59eqtrd 2766 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − (0 · (𝑅↑2))) = (𝐶↑2))
6152, 60oveq12d 7364 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2)))) = (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2)))
6247, 61oveq12d 7364 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))))
6362eqeq1d 2733 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0 ↔ (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = 0))
6435, 42, 633imtr4d 294 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))
65643exp 1119 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑅 ∈ ℝ+ → ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))))
66653adant1r 1178 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑅 ∈ ℝ+ → ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))))
67663imp 1110 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))
6867adantld 490 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))
69 oveq1 7353 . . . . . . . . 9 (𝐴 = 0 → (𝐴 · 𝑋) = (0 · 𝑋))
7069oveq1d 7361 . . . . . . . 8 (𝐴 = 0 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((0 · 𝑋) + (𝐵 · 𝑌)))
7170eqeq1d 2733 . . . . . . 7 (𝐴 = 0 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶))
7271anbi2d 630 . . . . . 6 (𝐴 = 0 → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) ↔ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)))
73 itscnhlc0yqe.q . . . . . . . . . 10 𝑄 = ((𝐴↑2) + (𝐵↑2))
74 sq0i 14100 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴↑2) = 0)
7574oveq1d 7361 . . . . . . . . . 10 (𝐴 = 0 → ((𝐴↑2) + (𝐵↑2)) = (0 + (𝐵↑2)))
7673, 75eqtrid 2778 . . . . . . . . 9 (𝐴 = 0 → 𝑄 = (0 + (𝐵↑2)))
7776oveq1d 7361 . . . . . . . 8 (𝐴 = 0 → (𝑄 · (𝑌↑2)) = ((0 + (𝐵↑2)) · (𝑌↑2)))
78 itscnhlc0yqe.t . . . . . . . . . . 11 𝑇 = -(2 · (𝐵 · 𝐶))
7978oveq1i 7356 . . . . . . . . . 10 (𝑇 · 𝑌) = (-(2 · (𝐵 · 𝐶)) · 𝑌)
8079a1i 11 . . . . . . . . 9 (𝐴 = 0 → (𝑇 · 𝑌) = (-(2 · (𝐵 · 𝐶)) · 𝑌))
81 itscnhlc0yqe.u . . . . . . . . . 10 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
8274oveq1d 7361 . . . . . . . . . . 11 (𝐴 = 0 → ((𝐴↑2) · (𝑅↑2)) = (0 · (𝑅↑2)))
8382oveq2d 7362 . . . . . . . . . 10 (𝐴 = 0 → ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) = ((𝐶↑2) − (0 · (𝑅↑2))))
8481, 83eqtrid 2778 . . . . . . . . 9 (𝐴 = 0 → 𝑈 = ((𝐶↑2) − (0 · (𝑅↑2))))
8580, 84oveq12d 7364 . . . . . . . 8 (𝐴 = 0 → ((𝑇 · 𝑌) + 𝑈) = ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2)))))
8677, 85oveq12d 7364 . . . . . . 7 (𝐴 = 0 → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))))
8786eqeq1d 2733 . . . . . 6 (𝐴 = 0 → (((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0 ↔ (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))
8872, 87imbi12d 344 . . . . 5 (𝐴 = 0 → (((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ↔ ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0)))
8988adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ↔ ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0)))
90893ad2ant1 1133 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ↔ ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0)))
91903ad2ant1 1133 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ↔ ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0)))
9268, 91mpbird 257 1 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006   + caddc 11009   · cmul 11011  cmin 11344  -cneg 11345  2c2 12180  +crp 12890  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969
This theorem is referenced by:  itsclc0yqe  48861
  Copyright terms: Public domain W3C validator