Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itschlc0yqe Structured version   Visualization version   GIF version

Theorem itschlc0yqe 48742
Description: Lemma for itsclc0 48753. Quadratic equation for the y-coordinate of the intersection points of a horizontal line and a circle. (Contributed by AV, 25-Feb-2023.)
Hypotheses
Ref Expression
itscnhlc0yqe.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itscnhlc0yqe.t 𝑇 = -(2 · (𝐵 · 𝐶))
itscnhlc0yqe.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
Assertion
Ref Expression
itschlc0yqe ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))

Proof of Theorem itschlc0yqe
StepHypRef Expression
1 oveq2 7377 . . . . . . . . . . . . . . 15 (𝐶 = (𝐵 · 𝑌) → (𝐵 · 𝐶) = (𝐵 · (𝐵 · 𝑌)))
21oveq2d 7385 . . . . . . . . . . . . . 14 (𝐶 = (𝐵 · 𝑌) → (2 · (𝐵 · 𝐶)) = (2 · (𝐵 · (𝐵 · 𝑌))))
32oveq1d 7384 . . . . . . . . . . . . 13 (𝐶 = (𝐵 · 𝑌) → ((2 · (𝐵 · 𝐶)) · 𝑌) = ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌))
43negeqd 11391 . . . . . . . . . . . 12 (𝐶 = (𝐵 · 𝑌) → -((2 · (𝐵 · 𝐶)) · 𝑌) = -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌))
5 oveq1 7376 . . . . . . . . . . . 12 (𝐶 = (𝐵 · 𝑌) → (𝐶↑2) = ((𝐵 · 𝑌)↑2))
64, 5oveq12d 7387 . . . . . . . . . . 11 (𝐶 = (𝐵 · 𝑌) → (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2)) = (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2)))
76oveq2d 7385 . . . . . . . . . 10 (𝐶 = (𝐵 · 𝑌) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))))
87eqcoms 2737 . . . . . . . . 9 ((𝐵 · 𝑌) = 𝐶 → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))))
9 simp12 1205 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℝ)
109recnd 11178 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐵 ∈ ℂ)
11 simp3r 1203 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℝ)
1211recnd 11178 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑌 ∈ ℂ)
1310, 12mulcld 11170 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝑌) ∈ ℂ)
1413sqcld 14085 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑌)↑2) ∈ ℂ)
15 2cnd 12240 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 2 ∈ ℂ)
1610, 13mulcld 11170 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · (𝐵 · 𝑌)) ∈ ℂ)
1715, 16mulcld 11170 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · (𝐵 · (𝐵 · 𝑌))) ∈ ℂ)
1817, 12mulcld 11170 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) ∈ ℂ)
1918negcld 11496 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) ∈ ℂ)
20 add32r 11370 . . . . . . . . . . 11 ((((𝐵 · 𝑌)↑2) ∈ ℂ ∧ -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) ∈ ℂ ∧ ((𝐵 · 𝑌)↑2) ∈ ℂ) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))) = ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) + -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)))
2114, 19, 14, 20syl3anc 1373 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))) = ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) + -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)))
2214, 14addcld 11169 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) ∈ ℂ)
2322, 18negsubd 11515 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) + -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)) = ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) − ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)))
2415, 16, 12mulassd 11173 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) = (2 · ((𝐵 · (𝐵 · 𝑌)) · 𝑌)))
2510, 13, 12mul32d 11360 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · (𝐵 · 𝑌)) · 𝑌) = ((𝐵 · 𝑌) · (𝐵 · 𝑌)))
2613sqvald 14084 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑌)↑2) = ((𝐵 · 𝑌) · (𝐵 · 𝑌)))
2725, 26eqtr4d 2767 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · (𝐵 · 𝑌)) · 𝑌) = ((𝐵 · 𝑌)↑2))
2827oveq2d 7385 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · ((𝐵 · (𝐵 · 𝑌)) · 𝑌)) = (2 · ((𝐵 · 𝑌)↑2)))
29142timesd 12401 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · ((𝐵 · 𝑌)↑2)) = (((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)))
3024, 28, 293eqtrrd 2769 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) = ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌))
3122, 30subeq0bd 11580 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) − ((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)) = 0)
3223, 31eqtrd 2764 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝐵 · 𝑌)↑2) + ((𝐵 · 𝑌)↑2)) + -((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌)) = 0)
3321, 32eqtrd 2764 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · (𝐵 · 𝑌))) · 𝑌) + ((𝐵 · 𝑌)↑2))) = 0)
348, 33sylan9eqr 2786 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) ∧ (𝐵 · 𝑌) = 𝐶) → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = 0)
3534ex 412 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑌) = 𝐶 → (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = 0))
36 simp3l 1202 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℝ)
3736recnd 11178 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝑋 ∈ ℂ)
3837mul02d 11348 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (0 · 𝑋) = 0)
3938oveq1d 7384 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((0 · 𝑋) + (𝐵 · 𝑌)) = (0 + (𝐵 · 𝑌)))
4013addlidd 11351 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (0 + (𝐵 · 𝑌)) = (𝐵 · 𝑌))
4139, 40eqtrd 2764 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((0 · 𝑋) + (𝐵 · 𝑌)) = (𝐵 · 𝑌))
4241eqeq1d 2731 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ (𝐵 · 𝑌) = 𝐶))
4310sqcld 14085 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵↑2) ∈ ℂ)
4443addlidd 11351 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (0 + (𝐵↑2)) = (𝐵↑2))
4544oveq1d 7384 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((0 + (𝐵↑2)) · (𝑌↑2)) = ((𝐵↑2) · (𝑌↑2)))
4610, 12sqmuld 14099 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐵 · 𝑌)↑2) = ((𝐵↑2) · (𝑌↑2)))
4745, 46eqtr4d 2767 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((0 + (𝐵↑2)) · (𝑌↑2)) = ((𝐵 · 𝑌)↑2))
48 simp13 1206 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℝ)
4948recnd 11178 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → 𝐶 ∈ ℂ)
5010, 49mulcld 11170 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℂ)
5115, 50mulcld 11170 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (2 · (𝐵 · 𝐶)) ∈ ℂ)
5251, 12mulneg1d 11607 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (-(2 · (𝐵 · 𝐶)) · 𝑌) = -((2 · (𝐵 · 𝐶)) · 𝑌))
53 rpcn 12938 . . . . . . . . . . . . . . 15 (𝑅 ∈ ℝ+𝑅 ∈ ℂ)
5453sqcld 14085 . . . . . . . . . . . . . 14 (𝑅 ∈ ℝ+ → (𝑅↑2) ∈ ℂ)
5554mul02d 11348 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ+ → (0 · (𝑅↑2)) = 0)
5655oveq2d 7385 . . . . . . . . . . . 12 (𝑅 ∈ ℝ+ → ((𝐶↑2) − (0 · (𝑅↑2))) = ((𝐶↑2) − 0))
57563ad2ant2 1134 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − (0 · (𝑅↑2))) = ((𝐶↑2) − 0))
5849sqcld 14085 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (𝐶↑2) ∈ ℂ)
5958subid1d 11498 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − 0) = (𝐶↑2))
6057, 59eqtrd 2764 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((𝐶↑2) − (0 · (𝑅↑2))) = (𝐶↑2))
6152, 60oveq12d 7387 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2)))) = (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2)))
6247, 61oveq12d 7387 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))))
6362eqeq1d 2731 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0 ↔ (((𝐵 · 𝑌)↑2) + (-((2 · (𝐵 · 𝐶)) · 𝑌) + (𝐶↑2))) = 0))
6435, 42, 633imtr4d 294 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))
65643exp 1119 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑅 ∈ ℝ+ → ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))))
66653adant1r 1178 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝑅 ∈ ℝ+ → ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))))
67663imp 1110 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))
6867adantld 490 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))
69 oveq1 7376 . . . . . . . . 9 (𝐴 = 0 → (𝐴 · 𝑋) = (0 · 𝑋))
7069oveq1d 7384 . . . . . . . 8 (𝐴 = 0 → ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = ((0 · 𝑋) + (𝐵 · 𝑌)))
7170eqeq1d 2731 . . . . . . 7 (𝐴 = 0 → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶 ↔ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶))
7271anbi2d 630 . . . . . 6 (𝐴 = 0 → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) ↔ (((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶)))
73 itscnhlc0yqe.q . . . . . . . . . 10 𝑄 = ((𝐴↑2) + (𝐵↑2))
74 sq0i 14134 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴↑2) = 0)
7574oveq1d 7384 . . . . . . . . . 10 (𝐴 = 0 → ((𝐴↑2) + (𝐵↑2)) = (0 + (𝐵↑2)))
7673, 75eqtrid 2776 . . . . . . . . 9 (𝐴 = 0 → 𝑄 = (0 + (𝐵↑2)))
7776oveq1d 7384 . . . . . . . 8 (𝐴 = 0 → (𝑄 · (𝑌↑2)) = ((0 + (𝐵↑2)) · (𝑌↑2)))
78 itscnhlc0yqe.t . . . . . . . . . . 11 𝑇 = -(2 · (𝐵 · 𝐶))
7978oveq1i 7379 . . . . . . . . . 10 (𝑇 · 𝑌) = (-(2 · (𝐵 · 𝐶)) · 𝑌)
8079a1i 11 . . . . . . . . 9 (𝐴 = 0 → (𝑇 · 𝑌) = (-(2 · (𝐵 · 𝐶)) · 𝑌))
81 itscnhlc0yqe.u . . . . . . . . . 10 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
8274oveq1d 7384 . . . . . . . . . . 11 (𝐴 = 0 → ((𝐴↑2) · (𝑅↑2)) = (0 · (𝑅↑2)))
8382oveq2d 7385 . . . . . . . . . 10 (𝐴 = 0 → ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2))) = ((𝐶↑2) − (0 · (𝑅↑2))))
8481, 83eqtrid 2776 . . . . . . . . 9 (𝐴 = 0 → 𝑈 = ((𝐶↑2) − (0 · (𝑅↑2))))
8580, 84oveq12d 7387 . . . . . . . 8 (𝐴 = 0 → ((𝑇 · 𝑌) + 𝑈) = ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2)))))
8677, 85oveq12d 7387 . . . . . . 7 (𝐴 = 0 → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))))
8786eqeq1d 2731 . . . . . 6 (𝐴 = 0 → (((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0 ↔ (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0))
8872, 87imbi12d 344 . . . . 5 (𝐴 = 0 → (((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ↔ ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0)))
8988adantl 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐴 = 0) → (((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ↔ ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0)))
90893ad2ant1 1133 . . 3 (((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ↔ ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0)))
91903ad2ant1 1133 . 2 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → (((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0) ↔ ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((0 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → (((0 + (𝐵↑2)) · (𝑌↑2)) + ((-(2 · (𝐵 · 𝐶)) · 𝑌) + ((𝐶↑2) − (0 · (𝑅↑2))))) = 0)))
9268, 91mpbird 257 1 ((((𝐴 ∈ ℝ ∧ 𝐴 = 0) ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ+ ∧ (𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ)) → ((((𝑋↑2) + (𝑌↑2)) = (𝑅↑2) ∧ ((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 𝐶) → ((𝑄 · (𝑌↑2)) + ((𝑇 · 𝑌) + 𝑈)) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044   + caddc 11047   · cmul 11049  cmin 11381  -cneg 11382  2c2 12217  +crp 12927  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003
This theorem is referenced by:  itsclc0yqe  48743
  Copyright terms: Public domain W3C validator