MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2d Structured version   Visualization version   GIF version

Theorem gausslemma2d 25451
Description: Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S={2,4,6,...,(p-1)}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2d (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2d
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
5 gausslemma2d.n . . 3 𝑁 = (𝐻𝑀)
61, 2, 3, 4, 5gausslemma2dlem7 25450 . 2 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
7 eldifi 3930 . . . . . . 7 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
8 prmnn 15722 . . . . . . . . 9 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
98nnred 11329 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
10 prmgt1 15743 . . . . . . . 8 (𝑃 ∈ ℙ → 1 < 𝑃)
119, 10jca 508 . . . . . . 7 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
121, 7, 113syl 18 . . . . . 6 (𝜑 → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
13 1mod 12957 . . . . . 6 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
1412, 13syl 17 . . . . 5 (𝜑 → (1 mod 𝑃) = 1)
1514eqcomd 2805 . . . 4 (𝜑 → 1 = (1 mod 𝑃))
1615eqeq2d 2809 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 ↔ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)))
17 neg1z 11703 . . . . . . . . . . 11 -1 ∈ ℤ
181, 4, 2, 5gausslemma2dlem0h 25440 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
19 zexpcl 13129 . . . . . . . . . . 11 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ)
2017, 18, 19sylancr 582 . . . . . . . . . 10 (𝜑 → (-1↑𝑁) ∈ ℤ)
21 2nn 11386 . . . . . . . . . . . . 13 2 ∈ ℕ
2221a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
231, 2gausslemma2dlem0b 25434 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ ℕ)
2423nnnn0d 11640 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ0)
2522, 24nnexpcld 13286 . . . . . . . . . . 11 (𝜑 → (2↑𝐻) ∈ ℕ)
2625nnzd 11771 . . . . . . . . . 10 (𝜑 → (2↑𝐻) ∈ ℤ)
2720, 26zmulcld 11778 . . . . . . . . 9 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ)
2827zred 11772 . . . . . . . 8 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℝ)
29 1red 10329 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
3028, 29jca 508 . . . . . . 7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ))
3130adantr 473 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ))
321gausslemma2dlem0a 25433 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
3332nnrpd 12115 . . . . . . . 8 (𝜑𝑃 ∈ ℝ+)
3420, 33jca 508 . . . . . . 7 (𝜑 → ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+))
3534adantr 473 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+))
36 simpr 478 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃))
37 modmul1 12978 . . . . . 6 (((((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))
3831, 35, 36, 37syl3anc 1491 . . . . 5 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))
3938ex 402 . . . 4 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃)))
4020zcnd 11773 . . . . . . . . 9 (𝜑 → (-1↑𝑁) ∈ ℂ)
4125nncnd 11330 . . . . . . . . 9 (𝜑 → (2↑𝐻) ∈ ℂ)
4240, 41, 40mul32d 10536 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)))
4318nn0cnd 11642 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
44432timesd 11563 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
4544eqcomd 2805 . . . . . . . . . . 11 (𝜑 → (𝑁 + 𝑁) = (2 · 𝑁))
4645oveq2d 6894 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = (-1↑(2 · 𝑁)))
47 neg1cn 11434 . . . . . . . . . . . 12 -1 ∈ ℂ
4847a1i 11 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℂ)
4948, 18, 18expaddd 13264 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
5018nn0zd 11770 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
51 m1expeven 13161 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
5250, 51syl 17 . . . . . . . . . 10 (𝜑 → (-1↑(2 · 𝑁)) = 1)
5346, 49, 523eqtr3d 2841 . . . . . . . . 9 (𝜑 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
5453oveq1d 6893 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)) = (1 · (2↑𝐻)))
5541mulid2d 10347 . . . . . . . 8 (𝜑 → (1 · (2↑𝐻)) = (2↑𝐻))
5642, 54, 553eqtrd 2837 . . . . . . 7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (2↑𝐻))
5756oveq1d 6893 . . . . . 6 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((2↑𝐻) mod 𝑃))
5840mulid2d 10347 . . . . . . 7 (𝜑 → (1 · (-1↑𝑁)) = (-1↑𝑁))
5958oveq1d 6893 . . . . . 6 (𝜑 → ((1 · (-1↑𝑁)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
6057, 59eqeq12d 2814 . . . . 5 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) ↔ ((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
612oveq2i 6889 . . . . . . . 8 (2↑𝐻) = (2↑((𝑃 − 1) / 2))
6261oveq1i 6888 . . . . . . 7 ((2↑𝐻) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃)
6362eqeq1i 2804 . . . . . 6 (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
64 2z 11699 . . . . . . . . . 10 2 ∈ ℤ
65 lgsvalmod 25393 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6664, 1, 65sylancr 582 . . . . . . . . 9 (𝜑 → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6766eqcomd 2805 . . . . . . . 8 (𝜑 → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
6867eqeq1d 2801 . . . . . . 7 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
691, 4, 2, 5gausslemma2dlem0i 25441 . . . . . . 7 (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7068, 69sylbid 232 . . . . . 6 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7163, 70syl5bi 234 . . . . 5 (𝜑 → (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7260, 71sylbid 232 . . . 4 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7339, 72syld 47 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7416, 73sylbid 232 . 2 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 → (2 /L 𝑃) = (-1↑𝑁)))
756, 74mpd 15 1 (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  cdif 3766  ifcif 4277  {csn 4368   class class class wbr 4843  cmpt 4922  cfv 6101  (class class class)co 6878  cc 10222  cr 10223  1c1 10225   + caddc 10227   · cmul 10229   < clt 10363  cmin 10556  -cneg 10557   / cdiv 10976  cn 11312  2c2 11368  4c4 11370  0cn0 11580  cz 11666  +crp 12074  ...cfz 12580  cfl 12846   mod cmo 12923  cexp 13114  cprime 15719   /L clgs 25371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-inf2 8788  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-se 5272  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-isom 6110  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-sup 8590  df-inf 8591  df-oi 8657  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-nn 11313  df-2 11376  df-3 11377  df-4 11378  df-5 11379  df-6 11380  df-n0 11581  df-xnn0 11653  df-z 11667  df-uz 11931  df-q 12034  df-rp 12075  df-ioo 12428  df-fz 12581  df-fzo 12721  df-fl 12848  df-mod 12924  df-seq 13056  df-exp 13115  df-fac 13314  df-hash 13371  df-cj 14180  df-re 14181  df-im 14182  df-sqrt 14316  df-abs 14317  df-clim 14560  df-prod 14973  df-dvds 15320  df-gcd 15552  df-prm 15720  df-phi 15804  df-pc 15875  df-lgs 25372
This theorem is referenced by:  2lgs  25484
  Copyright terms: Public domain W3C validator