MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2d Structured version   Visualization version   GIF version

Theorem gausslemma2d 27332
Description: Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2d (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2d
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
5 gausslemma2d.n . . 3 𝑁 = (𝐻𝑀)
61, 2, 3, 4, 5gausslemma2dlem7 27331 . 2 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
7 eldifi 4080 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
8 prmnn 16592 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
98nnred 12151 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
10 prmgt1 16615 . . . . . . 7 (𝑃 ∈ ℙ → 1 < 𝑃)
119, 10jca 511 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
12 1mod 13814 . . . . . 6 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
131, 7, 11, 124syl 19 . . . . 5 (𝜑 → (1 mod 𝑃) = 1)
1413eqcomd 2739 . . . 4 (𝜑 → 1 = (1 mod 𝑃))
1514eqeq2d 2744 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 ↔ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)))
16 neg1z 12518 . . . . . . . . . . 11 -1 ∈ ℤ
171, 4, 2, 5gausslemma2dlem0h 27321 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
18 zexpcl 13990 . . . . . . . . . . 11 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ)
1916, 17, 18sylancr 587 . . . . . . . . . 10 (𝜑 → (-1↑𝑁) ∈ ℤ)
20 2nn 12209 . . . . . . . . . . . . 13 2 ∈ ℕ
2120a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
221, 2gausslemma2dlem0b 27315 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ ℕ)
2322nnnn0d 12453 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ0)
2421, 23nnexpcld 14159 . . . . . . . . . . 11 (𝜑 → (2↑𝐻) ∈ ℕ)
2524nnzd 12505 . . . . . . . . . 10 (𝜑 → (2↑𝐻) ∈ ℤ)
2619, 25zmulcld 12593 . . . . . . . . 9 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ)
2726zred 12587 . . . . . . . 8 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℝ)
28 1red 11124 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
2927, 28jca 511 . . . . . . 7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ))
3029adantr 480 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ))
311gausslemma2dlem0a 27314 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
3231nnrpd 12938 . . . . . . . 8 (𝜑𝑃 ∈ ℝ+)
3319, 32jca 511 . . . . . . 7 (𝜑 → ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+))
3433adantr 480 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+))
35 simpr 484 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃))
36 modmul1 13838 . . . . . 6 (((((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))
3730, 34, 35, 36syl3anc 1373 . . . . 5 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))
3837ex 412 . . . 4 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃)))
3919zcnd 12588 . . . . . . . . 9 (𝜑 → (-1↑𝑁) ∈ ℂ)
4024nncnd 12152 . . . . . . . . 9 (𝜑 → (2↑𝐻) ∈ ℂ)
4139, 40, 39mul32d 11334 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)))
4217nn0cnd 12455 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
43422timesd 12375 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
4443eqcomd 2739 . . . . . . . . . . 11 (𝜑 → (𝑁 + 𝑁) = (2 · 𝑁))
4544oveq2d 7371 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = (-1↑(2 · 𝑁)))
46 neg1cn 12121 . . . . . . . . . . . 12 -1 ∈ ℂ
4746a1i 11 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℂ)
4847, 17, 17expaddd 14062 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
4917nn0zd 12504 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
50 m1expeven 14023 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
5149, 50syl 17 . . . . . . . . . 10 (𝜑 → (-1↑(2 · 𝑁)) = 1)
5245, 48, 513eqtr3d 2776 . . . . . . . . 9 (𝜑 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
5352oveq1d 7370 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)) = (1 · (2↑𝐻)))
5440mullidd 11141 . . . . . . . 8 (𝜑 → (1 · (2↑𝐻)) = (2↑𝐻))
5541, 53, 543eqtrd 2772 . . . . . . 7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (2↑𝐻))
5655oveq1d 7370 . . . . . 6 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((2↑𝐻) mod 𝑃))
5739mullidd 11141 . . . . . . 7 (𝜑 → (1 · (-1↑𝑁)) = (-1↑𝑁))
5857oveq1d 7370 . . . . . 6 (𝜑 → ((1 · (-1↑𝑁)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
5956, 58eqeq12d 2749 . . . . 5 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) ↔ ((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
602oveq2i 7366 . . . . . . . 8 (2↑𝐻) = (2↑((𝑃 − 1) / 2))
6160oveq1i 7365 . . . . . . 7 ((2↑𝐻) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃)
6261eqeq1i 2738 . . . . . 6 (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
63 2z 12514 . . . . . . . . . 10 2 ∈ ℤ
64 lgsvalmod 27274 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6563, 1, 64sylancr 587 . . . . . . . . 9 (𝜑 → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6665eqcomd 2739 . . . . . . . 8 (𝜑 → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
6766eqeq1d 2735 . . . . . . 7 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
681, 4, 2, 5gausslemma2dlem0i 27322 . . . . . . 7 (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
6967, 68sylbid 240 . . . . . 6 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7062, 69biimtrid 242 . . . . 5 (𝜑 → (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7159, 70sylbid 240 . . . 4 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7238, 71syld 47 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7315, 72sylbid 240 . 2 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 → (2 /L 𝑃) = (-1↑𝑁)))
746, 73mpd 15 1 (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cdif 3895  ifcif 4476  {csn 4577   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  1c1 11018   + caddc 11020   · cmul 11022   < clt 11157  cmin 11355  -cneg 11356   / cdiv 11785  cn 12136  2c2 12191  4c4 12193  0cn0 12392  cz 12479  +crp 12896  ...cfz 13414  cfl 13701   mod cmo 13780  cexp 13975  cprime 16589   /L clgs 27252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-q 12853  df-rp 12897  df-ioo 13256  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-prod 15818  df-dvds 16171  df-gcd 16413  df-prm 16590  df-phi 16684  df-pc 16756  df-lgs 27253
This theorem is referenced by:  2lgs  27365
  Copyright terms: Public domain W3C validator