Proof of Theorem gausslemma2d
| Step | Hyp | Ref
| Expression |
| 1 | | gausslemma2d.p |
. . 3
⊢ (𝜑 → 𝑃 ∈ (ℙ ∖
{2})) |
| 2 | | gausslemma2d.h |
. . 3
⊢ 𝐻 = ((𝑃 − 1) / 2) |
| 3 | | gausslemma2d.r |
. . 3
⊢ 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2)))) |
| 4 | | gausslemma2d.m |
. . 3
⊢ 𝑀 = (⌊‘(𝑃 / 4)) |
| 5 | | gausslemma2d.n |
. . 3
⊢ 𝑁 = (𝐻 − 𝑀) |
| 6 | 1, 2, 3, 4, 5 | gausslemma2dlem7 27341 |
. 2
⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1) |
| 7 | | eldifi 4111 |
. . . . . 6
⊢ (𝑃 ∈ (ℙ ∖ {2})
→ 𝑃 ∈
ℙ) |
| 8 | | prmnn 16698 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 9 | 8 | nnred 12260 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ) |
| 10 | | prmgt1 16721 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 1 <
𝑃) |
| 11 | 9, 10 | jca 511 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 <
𝑃)) |
| 12 | | 1mod 13925 |
. . . . . 6
⊢ ((𝑃 ∈ ℝ ∧ 1 <
𝑃) → (1 mod 𝑃) = 1) |
| 13 | 1, 7, 11, 12 | 4syl 19 |
. . . . 5
⊢ (𝜑 → (1 mod 𝑃) = 1) |
| 14 | 13 | eqcomd 2742 |
. . . 4
⊢ (𝜑 → 1 = (1 mod 𝑃)) |
| 15 | 14 | eqeq2d 2747 |
. . 3
⊢ (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 ↔ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃))) |
| 16 | | neg1z 12633 |
. . . . . . . . . . 11
⊢ -1 ∈
ℤ |
| 17 | 1, 4, 2, 5 | gausslemma2dlem0h 27331 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 18 | | zexpcl 14099 |
. . . . . . . . . . 11
⊢ ((-1
∈ ℤ ∧ 𝑁
∈ ℕ0) → (-1↑𝑁) ∈ ℤ) |
| 19 | 16, 17, 18 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (-1↑𝑁) ∈ ℤ) |
| 20 | | 2nn 12318 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℕ |
| 21 | 20 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 2 ∈
ℕ) |
| 22 | 1, 2 | gausslemma2dlem0b 27325 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐻 ∈ ℕ) |
| 23 | 22 | nnnn0d 12567 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐻 ∈
ℕ0) |
| 24 | 21, 23 | nnexpcld 14268 |
. . . . . . . . . . 11
⊢ (𝜑 → (2↑𝐻) ∈ ℕ) |
| 25 | 24 | nnzd 12620 |
. . . . . . . . . 10
⊢ (𝜑 → (2↑𝐻) ∈ ℤ) |
| 26 | 19, 25 | zmulcld 12708 |
. . . . . . . . 9
⊢ (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈
ℤ) |
| 27 | 26 | zred 12702 |
. . . . . . . 8
⊢ (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈
ℝ) |
| 28 | | 1red 11241 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℝ) |
| 29 | 27, 28 | jca 511 |
. . . . . . 7
⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈
ℝ)) |
| 30 | 29 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈
ℝ)) |
| 31 | 1 | gausslemma2dlem0a 27324 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 32 | 31 | nnrpd 13054 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈
ℝ+) |
| 33 | 19, 32 | jca 511 |
. . . . . . 7
⊢ (𝜑 → ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈
ℝ+)) |
| 34 | 33 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈
ℝ+)) |
| 35 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) |
| 36 | | modmul1 13947 |
. . . . . 6
⊢
(((((-1↑𝑁)
· (2↑𝐻)) ∈
ℝ ∧ 1 ∈ ℝ) ∧ ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧
(((-1↑𝑁) ·
(2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃)) |
| 37 | 30, 34, 35, 36 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃)) |
| 38 | 37 | ex 412 |
. . . 4
⊢ (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))) |
| 39 | 19 | zcnd 12703 |
. . . . . . . . 9
⊢ (𝜑 → (-1↑𝑁) ∈ ℂ) |
| 40 | 24 | nncnd 12261 |
. . . . . . . . 9
⊢ (𝜑 → (2↑𝐻) ∈ ℂ) |
| 41 | 39, 40, 39 | mul32d 11450 |
. . . . . . . 8
⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻))) |
| 42 | 17 | nn0cnd 12569 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 43 | 42 | 2timesd 12489 |
. . . . . . . . . . . 12
⊢ (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁)) |
| 44 | 43 | eqcomd 2742 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑁 + 𝑁) = (2 · 𝑁)) |
| 45 | 44 | oveq2d 7426 |
. . . . . . . . . 10
⊢ (𝜑 → (-1↑(𝑁 + 𝑁)) = (-1↑(2 · 𝑁))) |
| 46 | | neg1cn 12359 |
. . . . . . . . . . . 12
⊢ -1 ∈
ℂ |
| 47 | 46 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → -1 ∈
ℂ) |
| 48 | 47, 17, 17 | expaddd 14171 |
. . . . . . . . . 10
⊢ (𝜑 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁))) |
| 49 | 17 | nn0zd 12619 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 50 | | m1expeven 14132 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℤ →
(-1↑(2 · 𝑁)) =
1) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (-1↑(2 · 𝑁)) = 1) |
| 52 | 45, 48, 51 | 3eqtr3d 2779 |
. . . . . . . . 9
⊢ (𝜑 → ((-1↑𝑁) · (-1↑𝑁)) = 1) |
| 53 | 52 | oveq1d 7425 |
. . . . . . . 8
⊢ (𝜑 → (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)) = (1 · (2↑𝐻))) |
| 54 | 40 | mullidd 11258 |
. . . . . . . 8
⊢ (𝜑 → (1 · (2↑𝐻)) = (2↑𝐻)) |
| 55 | 41, 53, 54 | 3eqtrd 2775 |
. . . . . . 7
⊢ (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (2↑𝐻)) |
| 56 | 55 | oveq1d 7425 |
. . . . . 6
⊢ (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((2↑𝐻) mod 𝑃)) |
| 57 | 39 | mullidd 11258 |
. . . . . . 7
⊢ (𝜑 → (1 · (-1↑𝑁)) = (-1↑𝑁)) |
| 58 | 57 | oveq1d 7425 |
. . . . . 6
⊢ (𝜑 → ((1 ·
(-1↑𝑁)) mod 𝑃) = ((-1↑𝑁) mod 𝑃)) |
| 59 | 56, 58 | eqeq12d 2752 |
. . . . 5
⊢ (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) ↔ ((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃))) |
| 60 | 2 | oveq2i 7421 |
. . . . . . . 8
⊢
(2↑𝐻) =
(2↑((𝑃 − 1) /
2)) |
| 61 | 60 | oveq1i 7420 |
. . . . . . 7
⊢
((2↑𝐻) mod
𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃) |
| 62 | 61 | eqeq1i 2741 |
. . . . . 6
⊢
(((2↑𝐻) mod
𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃)) |
| 63 | | 2z 12629 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
| 64 | | lgsvalmod 27284 |
. . . . . . . . . 10
⊢ ((2
∈ ℤ ∧ 𝑃
∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃)) |
| 65 | 63, 1, 64 | sylancr 587 |
. . . . . . . . 9
⊢ (𝜑 → ((2 /L
𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃)) |
| 66 | 65 | eqcomd 2742 |
. . . . . . . 8
⊢ (𝜑 → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L
𝑃) mod 𝑃)) |
| 67 | 66 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃))) |
| 68 | 1, 4, 2, 5 | gausslemma2dlem0i 27332 |
. . . . . . 7
⊢ (𝜑 → (((2 /L
𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))) |
| 69 | 67, 68 | sylbid 240 |
. . . . . 6
⊢ (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))) |
| 70 | 62, 69 | biimtrid 242 |
. . . . 5
⊢ (𝜑 → (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))) |
| 71 | 59, 70 | sylbid 240 |
. . . 4
⊢ (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))) |
| 72 | 38, 71 | syld 47 |
. . 3
⊢ (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁))) |
| 73 | 15, 72 | sylbid 240 |
. 2
⊢ (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 → (2 /L 𝑃) = (-1↑𝑁))) |
| 74 | 6, 73 | mpd 15 |
1
⊢ (𝜑 → (2 /L
𝑃) = (-1↑𝑁)) |