MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gausslemma2d Structured version   Visualization version   GIF version

Theorem gausslemma2d 27342
Description: Gauss' Lemma (see also theorem 9.6 in [ApostolNT] p. 182) for integer 2: Let p be an odd prime. Let S = {2, 4, 6, ..., p - 1}. Let n denote the number of elements of S whose least positive residue modulo p is greater than p/2. Then ( 2 | p ) = (-1)^n. (Contributed by AV, 14-Jul-2021.)
Hypotheses
Ref Expression
gausslemma2d.p (𝜑𝑃 ∈ (ℙ ∖ {2}))
gausslemma2d.h 𝐻 = ((𝑃 − 1) / 2)
gausslemma2d.r 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
gausslemma2d.m 𝑀 = (⌊‘(𝑃 / 4))
gausslemma2d.n 𝑁 = (𝐻𝑀)
Assertion
Ref Expression
gausslemma2d (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Distinct variable groups:   𝑥,𝐻   𝑥,𝑃   𝜑,𝑥   𝑥,𝑀
Allowed substitution hints:   𝑅(𝑥)   𝑁(𝑥)

Proof of Theorem gausslemma2d
StepHypRef Expression
1 gausslemma2d.p . . 3 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 gausslemma2d.h . . 3 𝐻 = ((𝑃 − 1) / 2)
3 gausslemma2d.r . . 3 𝑅 = (𝑥 ∈ (1...𝐻) ↦ if((𝑥 · 2) < (𝑃 / 2), (𝑥 · 2), (𝑃 − (𝑥 · 2))))
4 gausslemma2d.m . . 3 𝑀 = (⌊‘(𝑃 / 4))
5 gausslemma2d.n . . 3 𝑁 = (𝐻𝑀)
61, 2, 3, 4, 5gausslemma2dlem7 27341 . 2 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1)
7 eldifi 4111 . . . . . 6 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
8 prmnn 16698 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
98nnred 12260 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
10 prmgt1 16721 . . . . . . 7 (𝑃 ∈ ℙ → 1 < 𝑃)
119, 10jca 511 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
12 1mod 13925 . . . . . 6 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
131, 7, 11, 124syl 19 . . . . 5 (𝜑 → (1 mod 𝑃) = 1)
1413eqcomd 2742 . . . 4 (𝜑 → 1 = (1 mod 𝑃))
1514eqeq2d 2747 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 ↔ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)))
16 neg1z 12633 . . . . . . . . . . 11 -1 ∈ ℤ
171, 4, 2, 5gausslemma2dlem0h 27331 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
18 zexpcl 14099 . . . . . . . . . . 11 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (-1↑𝑁) ∈ ℤ)
1916, 17, 18sylancr 587 . . . . . . . . . 10 (𝜑 → (-1↑𝑁) ∈ ℤ)
20 2nn 12318 . . . . . . . . . . . . 13 2 ∈ ℕ
2120a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℕ)
221, 2gausslemma2dlem0b 27325 . . . . . . . . . . . . 13 (𝜑𝐻 ∈ ℕ)
2322nnnn0d 12567 . . . . . . . . . . . 12 (𝜑𝐻 ∈ ℕ0)
2421, 23nnexpcld 14268 . . . . . . . . . . 11 (𝜑 → (2↑𝐻) ∈ ℕ)
2524nnzd 12620 . . . . . . . . . 10 (𝜑 → (2↑𝐻) ∈ ℤ)
2619, 25zmulcld 12708 . . . . . . . . 9 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℤ)
2726zred 12702 . . . . . . . 8 (𝜑 → ((-1↑𝑁) · (2↑𝐻)) ∈ ℝ)
28 1red 11241 . . . . . . . 8 (𝜑 → 1 ∈ ℝ)
2927, 28jca 511 . . . . . . 7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ))
3029adantr 480 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ))
311gausslemma2dlem0a 27324 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
3231nnrpd 13054 . . . . . . . 8 (𝜑𝑃 ∈ ℝ+)
3319, 32jca 511 . . . . . . 7 (𝜑 → ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+))
3433adantr 480 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+))
35 simpr 484 . . . . . 6 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃))
36 modmul1 13947 . . . . . 6 (((((-1↑𝑁) · (2↑𝐻)) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ((-1↑𝑁) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))
3730, 34, 35, 36syl3anc 1373 . . . . 5 ((𝜑 ∧ (((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃)) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃))
3837ex 412 . . . 4 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃)))
3919zcnd 12703 . . . . . . . . 9 (𝜑 → (-1↑𝑁) ∈ ℂ)
4024nncnd 12261 . . . . . . . . 9 (𝜑 → (2↑𝐻) ∈ ℂ)
4139, 40, 39mul32d 11450 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)))
4217nn0cnd 12569 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
43422timesd 12489 . . . . . . . . . . . 12 (𝜑 → (2 · 𝑁) = (𝑁 + 𝑁))
4443eqcomd 2742 . . . . . . . . . . 11 (𝜑 → (𝑁 + 𝑁) = (2 · 𝑁))
4544oveq2d 7426 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = (-1↑(2 · 𝑁)))
46 neg1cn 12359 . . . . . . . . . . . 12 -1 ∈ ℂ
4746a1i 11 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℂ)
4847, 17, 17expaddd 14171 . . . . . . . . . 10 (𝜑 → (-1↑(𝑁 + 𝑁)) = ((-1↑𝑁) · (-1↑𝑁)))
4917nn0zd 12619 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℤ)
50 m1expeven 14132 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (-1↑(2 · 𝑁)) = 1)
5149, 50syl 17 . . . . . . . . . 10 (𝜑 → (-1↑(2 · 𝑁)) = 1)
5245, 48, 513eqtr3d 2779 . . . . . . . . 9 (𝜑 → ((-1↑𝑁) · (-1↑𝑁)) = 1)
5352oveq1d 7425 . . . . . . . 8 (𝜑 → (((-1↑𝑁) · (-1↑𝑁)) · (2↑𝐻)) = (1 · (2↑𝐻)))
5440mullidd 11258 . . . . . . . 8 (𝜑 → (1 · (2↑𝐻)) = (2↑𝐻))
5541, 53, 543eqtrd 2775 . . . . . . 7 (𝜑 → (((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) = (2↑𝐻))
5655oveq1d 7425 . . . . . 6 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((2↑𝐻) mod 𝑃))
5739mullidd 11258 . . . . . . 7 (𝜑 → (1 · (-1↑𝑁)) = (-1↑𝑁))
5857oveq1d 7425 . . . . . 6 (𝜑 → ((1 · (-1↑𝑁)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
5956, 58eqeq12d 2752 . . . . 5 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) ↔ ((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
602oveq2i 7421 . . . . . . . 8 (2↑𝐻) = (2↑((𝑃 − 1) / 2))
6160oveq1i 7420 . . . . . . 7 ((2↑𝐻) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃)
6261eqeq1i 2741 . . . . . 6 (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃))
63 2z 12629 . . . . . . . . . 10 2 ∈ ℤ
64 lgsvalmod 27284 . . . . . . . . . 10 ((2 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6563, 1, 64sylancr 587 . . . . . . . . 9 (𝜑 → ((2 /L 𝑃) mod 𝑃) = ((2↑((𝑃 − 1) / 2)) mod 𝑃))
6665eqcomd 2742 . . . . . . . 8 (𝜑 → ((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((2 /L 𝑃) mod 𝑃))
6766eqeq1d 2738 . . . . . . 7 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) ↔ ((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃)))
681, 4, 2, 5gausslemma2dlem0i 27332 . . . . . . 7 (𝜑 → (((2 /L 𝑃) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
6967, 68sylbid 240 . . . . . 6 (𝜑 → (((2↑((𝑃 − 1) / 2)) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7062, 69biimtrid 242 . . . . 5 (𝜑 → (((2↑𝐻) mod 𝑃) = ((-1↑𝑁) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7159, 70sylbid 240 . . . 4 (𝜑 → (((((-1↑𝑁) · (2↑𝐻)) · (-1↑𝑁)) mod 𝑃) = ((1 · (-1↑𝑁)) mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7238, 71syld 47 . . 3 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = (1 mod 𝑃) → (2 /L 𝑃) = (-1↑𝑁)))
7315, 72sylbid 240 . 2 (𝜑 → ((((-1↑𝑁) · (2↑𝐻)) mod 𝑃) = 1 → (2 /L 𝑃) = (-1↑𝑁)))
746, 73mpd 15 1 (𝜑 → (2 /L 𝑃) = (-1↑𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3928  ifcif 4505  {csn 4606   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cmin 11471  -cneg 11472   / cdiv 11899  cn 12245  2c2 12300  4c4 12302  0cn0 12506  cz 12593  +crp 13013  ...cfz 13529  cfl 13812   mod cmo 13891  cexp 14084  cprime 16695   /L clgs 27262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-ioo 13371  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-prod 15925  df-dvds 16278  df-gcd 16519  df-prm 16696  df-phi 16790  df-pc 16862  df-lgs 27263
This theorem is referenced by:  2lgs  27375
  Copyright terms: Public domain W3C validator