Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem3 Structured version   Visualization version   GIF version

Theorem stirlinglem3 46091
Description: Long but simple algebraic transformations are applied to show that 𝑉, the Wallis formula for π , can be expressed in terms of 𝐴, the Stirling's approximation formula for the factorial, up to a constant factor. This will allow (in a later theorem) to determine the right constant factor to be put into the 𝐴, in order to get the exact Stirling's formula. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem3.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem3.2 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
stirlinglem3.3 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
stirlinglem3.4 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
Assertion
Ref Expression
stirlinglem3 𝑉 = (𝑛 ∈ ℕ ↦ ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))

Proof of Theorem stirlinglem3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 stirlinglem3.4 . 2 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
2 nnnn0 12533 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
3 faccl 14322 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
4 nncn 12274 . . . . . . . . . . . . 13 ((!‘𝑛) ∈ ℕ → (!‘𝑛) ∈ ℂ)
52, 3, 43syl 18 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℂ)
6 2cnd 12344 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 2 ∈ ℂ)
7 nncn 12274 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
86, 7mulcld 11281 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
98sqrtcld 15476 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℂ)
10 ere 16125 . . . . . . . . . . . . . . . . 17 e ∈ ℝ
1110recni 11275 . . . . . . . . . . . . . . . 16 e ∈ ℂ
1211a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → e ∈ ℂ)
13 epos 16243 . . . . . . . . . . . . . . . . 17 0 < e
1410, 13gt0ne0ii 11799 . . . . . . . . . . . . . . . 16 e ≠ 0
1514a1i 11 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → e ≠ 0)
167, 12, 15divcld 12043 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℂ)
1716, 2expcld 14186 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℂ)
189, 17mulcld 11281 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
19 2rp 13039 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ+
2019a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
21 nnrp 13046 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
2220, 21rpmulcld 13093 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
2322sqrtgt0d 15451 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 0 < (√‘(2 · 𝑛)))
2423gt0ne0d 11827 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ≠ 0)
25 nnne0 12300 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
267, 12, 25, 15divne0d 12059 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (𝑛 / e) ≠ 0)
27 nnz 12634 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
2816, 26, 27expne0d 14192 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ≠ 0)
299, 17, 24, 28mulne0d 11915 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
305, 18, 29divcld 12043 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ)
31 stirlinglem3.1 . . . . . . . . . . . 12 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
3231fvmpt2 7027 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
3330, 32mpdan 687 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
3433oveq1d 7446 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝐴𝑛)↑4) = (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))↑4))
35 stirlinglem3.3 . . . . . . . . . . . 12 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
3635fvmpt2 7027 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ) → (𝐸𝑛) = ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
3718, 36mpdan 687 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐸𝑛) = ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
3837oveq1d 7446 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝐸𝑛)↑4) = (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4))
3934, 38oveq12d 7449 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) = ((((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))↑4) · (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4)))
40 4nn0 12545 . . . . . . . . . . 11 4 ∈ ℕ0
4140a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 4 ∈ ℕ0)
425, 18, 29, 41expdivd 14200 . . . . . . . . 9 (𝑛 ∈ ℕ → (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))↑4) = (((!‘𝑛)↑4) / (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4)))
4342oveq1d 7446 . . . . . . . 8 (𝑛 ∈ ℕ → ((((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))↑4) · (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4)) = ((((!‘𝑛)↑4) / (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4)) · (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4)))
445, 41expcld 14186 . . . . . . . . 9 (𝑛 ∈ ℕ → ((!‘𝑛)↑4) ∈ ℂ)
4518, 41expcld 14186 . . . . . . . . 9 (𝑛 ∈ ℕ → (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4) ∈ ℂ)
4641nn0zd 12639 . . . . . . . . . 10 (𝑛 ∈ ℕ → 4 ∈ ℤ)
4718, 29, 46expne0d 14192 . . . . . . . . 9 (𝑛 ∈ ℕ → (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4) ≠ 0)
4844, 45, 47divcan1d 12044 . . . . . . . 8 (𝑛 ∈ ℕ → ((((!‘𝑛)↑4) / (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4)) · (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4)) = ((!‘𝑛)↑4))
4939, 43, 483eqtrd 2781 . . . . . . 7 (𝑛 ∈ ℕ → (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) = ((!‘𝑛)↑4))
5049eqcomd 2743 . . . . . 6 (𝑛 ∈ ℕ → ((!‘𝑛)↑4) = (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)))
5150oveq2d 7447 . . . . 5 (𝑛 ∈ ℕ → ((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) = ((2↑(4 · 𝑛)) · (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4))))
52 2nn0 12543 . . . . . . . . . . . . 13 2 ∈ ℕ0
5352a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 2 ∈ ℕ0)
5453, 2nn0mulcld 12592 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ0)
55 faccl 14322 . . . . . . . . . . 11 ((2 · 𝑛) ∈ ℕ0 → (!‘(2 · 𝑛)) ∈ ℕ)
56 nncn 12274 . . . . . . . . . . 11 ((!‘(2 · 𝑛)) ∈ ℕ → (!‘(2 · 𝑛)) ∈ ℂ)
5754, 55, 563syl 18 . . . . . . . . . 10 (𝑛 ∈ ℕ → (!‘(2 · 𝑛)) ∈ ℂ)
5857sqcld 14184 . . . . . . . . 9 (𝑛 ∈ ℕ → ((!‘(2 · 𝑛))↑2) ∈ ℂ)
596, 8mulcld 11281 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2 · (2 · 𝑛)) ∈ ℂ)
6059sqrtcld 15476 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (√‘(2 · (2 · 𝑛))) ∈ ℂ)
618, 12, 15divcld 12043 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((2 · 𝑛) / e) ∈ ℂ)
6261, 54expcld 14186 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (((2 · 𝑛) / e)↑(2 · 𝑛)) ∈ ℂ)
6360, 62mulcld 11281 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))) ∈ ℂ)
6463sqcld 14184 . . . . . . . . 9 (𝑛 ∈ ℕ → (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2) ∈ ℂ)
6520, 22rpmulcld 13093 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2 · (2 · 𝑛)) ∈ ℝ+)
6665sqrtgt0d 15451 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < (√‘(2 · (2 · 𝑛))))
6766gt0ne0d 11827 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (√‘(2 · (2 · 𝑛))) ≠ 0)
6820rpne0d 13082 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 2 ≠ 0)
696, 7, 68, 25mulne0d 11915 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (2 · 𝑛) ≠ 0)
708, 12, 69, 15divne0d 12059 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((2 · 𝑛) / e) ≠ 0)
71 2z 12649 . . . . . . . . . . . . . 14 2 ∈ ℤ
7271a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 2 ∈ ℤ)
7372, 27zmulcld 12728 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℤ)
7461, 70, 73expne0d 14192 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (((2 · 𝑛) / e)↑(2 · 𝑛)) ≠ 0)
7560, 62, 67, 74mulne0d 11915 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))) ≠ 0)
7663, 75, 72expne0d 14192 . . . . . . . . 9 (𝑛 ∈ ℕ → (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2) ≠ 0)
7758, 64, 76divcan1d 12044 . . . . . . . 8 (𝑛 ∈ ℕ → ((((!‘(2 · 𝑛))↑2) / (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)) · (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)) = ((!‘(2 · 𝑛))↑2))
7857, 63, 75, 53expdivd 14200 . . . . . . . . . 10 (𝑛 ∈ ℕ → (((!‘(2 · 𝑛)) / ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))))↑2) = (((!‘(2 · 𝑛))↑2) / (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)))
7978eqcomd 2743 . . . . . . . . 9 (𝑛 ∈ ℕ → (((!‘(2 · 𝑛))↑2) / (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)) = (((!‘(2 · 𝑛)) / ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))))↑2))
8079oveq1d 7446 . . . . . . . 8 (𝑛 ∈ ℕ → ((((!‘(2 · 𝑛))↑2) / (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)) · (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)) = ((((!‘(2 · 𝑛)) / ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))))↑2) · (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)))
8177, 80eqtr3d 2779 . . . . . . 7 (𝑛 ∈ ℕ → ((!‘(2 · 𝑛))↑2) = ((((!‘(2 · 𝑛)) / ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))))↑2) · (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)))
82 fveq2 6906 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (!‘𝑛) = (!‘𝑚))
83 oveq2 7439 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (2 · 𝑛) = (2 · 𝑚))
8483fveq2d 6910 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (√‘(2 · 𝑛)) = (√‘(2 · 𝑚)))
85 oveq1 7438 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑛 / e) = (𝑚 / e))
86 id 22 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚𝑛 = 𝑚)
8785, 86oveq12d 7449 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → ((𝑛 / e)↑𝑛) = ((𝑚 / e)↑𝑚))
8884, 87oveq12d 7449 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)))
8982, 88oveq12d 7449 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑚) / ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚))))
9089cbvmptv 5255 . . . . . . . . . . . 12 (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))) = (𝑚 ∈ ℕ ↦ ((!‘𝑚) / ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚))))
9131, 90eqtri 2765 . . . . . . . . . . 11 𝐴 = (𝑚 ∈ ℕ ↦ ((!‘𝑚) / ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚))))
92 fveq2 6906 . . . . . . . . . . . 12 (𝑚 = (2 · 𝑛) → (!‘𝑚) = (!‘(2 · 𝑛)))
93 oveq2 7439 . . . . . . . . . . . . . 14 (𝑚 = (2 · 𝑛) → (2 · 𝑚) = (2 · (2 · 𝑛)))
9493fveq2d 6910 . . . . . . . . . . . . 13 (𝑚 = (2 · 𝑛) → (√‘(2 · 𝑚)) = (√‘(2 · (2 · 𝑛))))
95 oveq1 7438 . . . . . . . . . . . . . 14 (𝑚 = (2 · 𝑛) → (𝑚 / e) = ((2 · 𝑛) / e))
96 id 22 . . . . . . . . . . . . . 14 (𝑚 = (2 · 𝑛) → 𝑚 = (2 · 𝑛))
9795, 96oveq12d 7449 . . . . . . . . . . . . 13 (𝑚 = (2 · 𝑛) → ((𝑚 / e)↑𝑚) = (((2 · 𝑛) / e)↑(2 · 𝑛)))
9894, 97oveq12d 7449 . . . . . . . . . . . 12 (𝑚 = (2 · 𝑛) → ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)) = ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))))
9992, 98oveq12d 7449 . . . . . . . . . . 11 (𝑚 = (2 · 𝑛) → ((!‘𝑚) / ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚))) = ((!‘(2 · 𝑛)) / ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))))
100 2nn 12339 . . . . . . . . . . . . 13 2 ∈ ℕ
101100a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 2 ∈ ℕ)
102 id 22 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
103101, 102nnmulcld 12319 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
10457, 63, 75divcld 12043 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((!‘(2 · 𝑛)) / ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))) ∈ ℂ)
10591, 99, 103, 104fvmptd3 7039 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐴‘(2 · 𝑛)) = ((!‘(2 · 𝑛)) / ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))))
106105oveq1d 7446 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝐴‘(2 · 𝑛))↑2) = (((!‘(2 · 𝑛)) / ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))))↑2))
107106eqcomd 2743 . . . . . . . 8 (𝑛 ∈ ℕ → (((!‘(2 · 𝑛)) / ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))))↑2) = ((𝐴‘(2 · 𝑛))↑2))
108107oveq1d 7446 . . . . . . 7 (𝑛 ∈ ℕ → ((((!‘(2 · 𝑛)) / ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))))↑2) · (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)) = (((𝐴‘(2 · 𝑛))↑2) · (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)))
109 eqidd 2738 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚))) = (𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚))))
11098adantl 481 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∧ 𝑚 = (2 · 𝑛)) → ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)) = ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))))
111109, 110, 103, 63fvmptd 7023 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)))‘(2 · 𝑛)) = ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))))
112111oveq1d 7446 . . . . . . . . 9 (𝑛 ∈ ℕ → (((𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)))‘(2 · 𝑛))↑2) = (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2))
113112eqcomd 2743 . . . . . . . 8 (𝑛 ∈ ℕ → (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2) = (((𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)))‘(2 · 𝑛))↑2))
114113oveq2d 7447 . . . . . . 7 (𝑛 ∈ ℕ → (((𝐴‘(2 · 𝑛))↑2) · (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)) = (((𝐴‘(2 · 𝑛))↑2) · (((𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)))‘(2 · 𝑛))↑2)))
11581, 108, 1143eqtrd 2781 . . . . . 6 (𝑛 ∈ ℕ → ((!‘(2 · 𝑛))↑2) = (((𝐴‘(2 · 𝑛))↑2) · (((𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)))‘(2 · 𝑛))↑2)))
11688cbvmptv 5255 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)))
117116a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚))))
118117fveq1d 6908 . . . . . . . . 9 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))‘(2 · 𝑛)) = ((𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)))‘(2 · 𝑛)))
119118eqcomd 2743 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)))‘(2 · 𝑛)) = ((𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))‘(2 · 𝑛)))
120119oveq1d 7446 . . . . . . 7 (𝑛 ∈ ℕ → (((𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)))‘(2 · 𝑛))↑2) = (((𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))‘(2 · 𝑛))↑2))
121120oveq2d 7447 . . . . . 6 (𝑛 ∈ ℕ → (((𝐴‘(2 · 𝑛))↑2) · (((𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚)))‘(2 · 𝑛))↑2)) = (((𝐴‘(2 · 𝑛))↑2) · (((𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))‘(2 · 𝑛))↑2)))
122105, 104eqeltrd 2841 . . . . . . . . . 10 (𝑛 ∈ ℕ → (𝐴‘(2 · 𝑛)) ∈ ℂ)
123 stirlinglem3.2 . . . . . . . . . . 11 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
124123fvmpt2 7027 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ (𝐴‘(2 · 𝑛)) ∈ ℂ) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
125122, 124mpdan 687 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
126125eqcomd 2743 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐴‘(2 · 𝑛)) = (𝐷𝑛))
127126oveq1d 7446 . . . . . . 7 (𝑛 ∈ ℕ → ((𝐴‘(2 · 𝑛))↑2) = ((𝐷𝑛)↑2))
12835a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
129128fveq1d 6908 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐸‘(2 · 𝑛)) = ((𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))‘(2 · 𝑛)))
130129eqcomd 2743 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))‘(2 · 𝑛)) = (𝐸‘(2 · 𝑛)))
131130oveq1d 7446 . . . . . . 7 (𝑛 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))‘(2 · 𝑛))↑2) = ((𝐸‘(2 · 𝑛))↑2))
132127, 131oveq12d 7449 . . . . . 6 (𝑛 ∈ ℕ → (((𝐴‘(2 · 𝑛))↑2) · (((𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))‘(2 · 𝑛))↑2)) = (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2)))
133115, 121, 1323eqtrd 2781 . . . . 5 (𝑛 ∈ ℕ → ((!‘(2 · 𝑛))↑2) = (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2)))
13451, 133oveq12d 7449 . . . 4 (𝑛 ∈ ℕ → (((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) = (((2↑(4 · 𝑛)) · (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4))) / (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2))))
135134oveq1d 7446 . . 3 (𝑛 ∈ ℕ → ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)) = ((((2↑(4 · 𝑛)) · (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4))) / (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)))
136135mpteq2ia 5245 . 2 (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4))) / (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)))
13741, 2nn0mulcld 12592 . . . . . . . 8 (𝑛 ∈ ℕ → (4 · 𝑛) ∈ ℕ0)
1386, 137expcld 14186 . . . . . . 7 (𝑛 ∈ ℕ → (2↑(4 · 𝑛)) ∈ ℂ)
13949, 44eqeltrd 2841 . . . . . . 7 (𝑛 ∈ ℕ → (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) ∈ ℂ)
140138, 139mulcomd 11282 . . . . . 6 (𝑛 ∈ ℕ → ((2↑(4 · 𝑛)) · (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4))) = ((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) · (2↑(4 · 𝑛))))
141140oveq1d 7446 . . . . 5 (𝑛 ∈ ℕ → (((2↑(4 · 𝑛)) · (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4))) / (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2))) = (((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) · (2↑(4 · 𝑛))) / (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2))))
142141oveq1d 7446 . . . 4 (𝑛 ∈ ℕ → ((((2↑(4 · 𝑛)) · (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4))) / (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)) = ((((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) · (2↑(4 · 𝑛))) / (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)))
143125, 122eqeltrd 2841 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ ℂ)
144143sqcld 14184 . . . . . . 7 (𝑛 ∈ ℕ → ((𝐷𝑛)↑2) ∈ ℂ)
145128, 117eqtrd 2777 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝐸 = (𝑚 ∈ ℕ ↦ ((√‘(2 · 𝑚)) · ((𝑚 / e)↑𝑚))))
146145, 110, 103, 63fvmptd 7023 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐸‘(2 · 𝑛)) = ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛))))
147146, 63eqeltrd 2841 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐸‘(2 · 𝑛)) ∈ ℂ)
148147sqcld 14184 . . . . . . 7 (𝑛 ∈ ℕ → ((𝐸‘(2 · 𝑛))↑2) ∈ ℂ)
149 nnne0 12300 . . . . . . . . . . . 12 ((!‘(2 · 𝑛)) ∈ ℕ → (!‘(2 · 𝑛)) ≠ 0)
15054, 55, 1493syl 18 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (!‘(2 · 𝑛)) ≠ 0)
15157, 63, 150, 75divne0d 12059 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((!‘(2 · 𝑛)) / ((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))) ≠ 0)
152105, 151eqnetrd 3008 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴‘(2 · 𝑛)) ≠ 0)
153125, 152eqnetrd 3008 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐷𝑛) ≠ 0)
154143, 153, 72expne0d 14192 . . . . . . 7 (𝑛 ∈ ℕ → ((𝐷𝑛)↑2) ≠ 0)
155146, 75eqnetrd 3008 . . . . . . . 8 (𝑛 ∈ ℕ → (𝐸‘(2 · 𝑛)) ≠ 0)
156147, 155, 72expne0d 14192 . . . . . . 7 (𝑛 ∈ ℕ → ((𝐸‘(2 · 𝑛))↑2) ≠ 0)
157139, 144, 138, 148, 154, 156divmuldivd 12084 . . . . . 6 (𝑛 ∈ ℕ → (((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) / ((𝐷𝑛)↑2)) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) = (((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) · (2↑(4 · 𝑛))) / (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2))))
158157eqcomd 2743 . . . . 5 (𝑛 ∈ ℕ → (((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) · (2↑(4 · 𝑛))) / (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2))) = (((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) / ((𝐷𝑛)↑2)) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))))
159158oveq1d 7446 . . . 4 (𝑛 ∈ ℕ → ((((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) · (2↑(4 · 𝑛))) / (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)) = ((((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) / ((𝐷𝑛)↑2)) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)))
16033, 30eqeltrd 2841 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℂ)
161160, 41expcld 14186 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝐴𝑛)↑4) ∈ ℂ)
16238, 45eqeltrd 2841 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝐸𝑛)↑4) ∈ ℂ)
163161, 162, 144, 154div23d 12080 . . . . . . 7 (𝑛 ∈ ℕ → ((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) / ((𝐷𝑛)↑2)) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝐸𝑛)↑4)))
164163oveq1d 7446 . . . . . 6 (𝑛 ∈ ℕ → (((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) / ((𝐷𝑛)↑2)) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) = (((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝐸𝑛)↑4)) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))))
165164oveq1d 7446 . . . . 5 (𝑛 ∈ ℕ → ((((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) / ((𝐷𝑛)↑2)) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)) = ((((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝐸𝑛)↑4)) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)))
166161, 144, 154divcld 12043 . . . . . . 7 (𝑛 ∈ ℕ → (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℂ)
167138, 148, 156divcld 12043 . . . . . . 7 (𝑛 ∈ ℕ → ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2)) ∈ ℂ)
168166, 162, 167mulassd 11284 . . . . . 6 (𝑛 ∈ ℕ → (((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝐸𝑛)↑4)) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · (((𝐸𝑛)↑4) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2)))))
169168oveq1d 7446 . . . . 5 (𝑛 ∈ ℕ → ((((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝐸𝑛)↑4)) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)) = (((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · (((𝐸𝑛)↑4) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2)))) / ((2 · 𝑛) + 1)))
170162, 167mulcld 11281 . . . . . . 7 (𝑛 ∈ ℕ → (((𝐸𝑛)↑4) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) ∈ ℂ)
171 1cnd 11256 . . . . . . . 8 (𝑛 ∈ ℕ → 1 ∈ ℂ)
1728, 171addcld 11280 . . . . . . 7 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℂ)
173 0red 11264 . . . . . . . . 9 (𝑛 ∈ ℕ → 0 ∈ ℝ)
174103nnred 12281 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
175 2re 12340 . . . . . . . . . . . 12 2 ∈ ℝ
176175a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 2 ∈ ℝ)
177 nnre 12273 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
178176, 177remulcld 11291 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
179 1red 11262 . . . . . . . . . 10 (𝑛 ∈ ℕ → 1 ∈ ℝ)
180178, 179readdcld 11290 . . . . . . . . 9 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℝ)
181103nngt0d 12315 . . . . . . . . 9 (𝑛 ∈ ℕ → 0 < (2 · 𝑛))
182174ltp1d 12198 . . . . . . . . 9 (𝑛 ∈ ℕ → (2 · 𝑛) < ((2 · 𝑛) + 1))
183173, 174, 180, 181, 182lttrd 11422 . . . . . . . 8 (𝑛 ∈ ℕ → 0 < ((2 · 𝑛) + 1))
184183gt0ne0d 11827 . . . . . . 7 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≠ 0)
185166, 170, 172, 184divassd 12078 . . . . . 6 (𝑛 ∈ ℕ → (((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · (((𝐸𝑛)↑4) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2)))) / ((2 · 𝑛) + 1)) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((((𝐸𝑛)↑4) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1))))
186162, 138, 148, 156div12d 12079 . . . . . . . . . 10 (𝑛 ∈ ℕ → (((𝐸𝑛)↑4) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) = ((2↑(4 · 𝑛)) · (((𝐸𝑛)↑4) / ((𝐸‘(2 · 𝑛))↑2))))
1879, 17, 41mulexpd 14201 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4) = (((√‘(2 · 𝑛))↑4) · (((𝑛 / e)↑𝑛)↑4)))
18860, 62sqmuld 14198 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2) = (((√‘(2 · (2 · 𝑛)))↑2) · ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2)))
189187, 188oveq12d 7449 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4) / (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)) = ((((√‘(2 · 𝑛))↑4) · (((𝑛 / e)↑𝑛)↑4)) / (((√‘(2 · (2 · 𝑛)))↑2) · ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2))))
190146oveq1d 7446 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝐸‘(2 · 𝑛))↑2) = (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2))
19138, 190oveq12d 7449 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (((𝐸𝑛)↑4) / ((𝐸‘(2 · 𝑛))↑2)) = ((((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))↑4) / (((√‘(2 · (2 · 𝑛))) · (((2 · 𝑛) / e)↑(2 · 𝑛)))↑2)))
1929, 41expcld 14186 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛))↑4) ∈ ℂ)
19360sqcld 14184 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((√‘(2 · (2 · 𝑛)))↑2) ∈ ℂ)
19417, 41expcld 14186 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (((𝑛 / e)↑𝑛)↑4) ∈ ℂ)
19562sqcld 14184 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2) ∈ ℂ)
19660, 67, 72expne0d 14192 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((√‘(2 · (2 · 𝑛)))↑2) ≠ 0)
19762, 74, 72expne0d 14192 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2) ≠ 0)
198192, 193, 194, 195, 196, 197divmuldivd 12084 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((((√‘(2 · 𝑛))↑4) / ((√‘(2 · (2 · 𝑛)))↑2)) · ((((𝑛 / e)↑𝑛)↑4) / ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2))) = ((((√‘(2 · 𝑛))↑4) · (((𝑛 / e)↑𝑛)↑4)) / (((√‘(2 · (2 · 𝑛)))↑2) · ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2))))
199189, 191, 1983eqtr4d 2787 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (((𝐸𝑛)↑4) / ((𝐸‘(2 · 𝑛))↑2)) = ((((√‘(2 · 𝑛))↑4) / ((√‘(2 · (2 · 𝑛)))↑2)) · ((((𝑛 / e)↑𝑛)↑4) / ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2))))
200199oveq2d 7447 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((2↑(4 · 𝑛)) · (((𝐸𝑛)↑4) / ((𝐸‘(2 · 𝑛))↑2))) = ((2↑(4 · 𝑛)) · ((((√‘(2 · 𝑛))↑4) / ((√‘(2 · (2 · 𝑛)))↑2)) · ((((𝑛 / e)↑𝑛)↑4) / ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2)))))
20165rprege0d 13084 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((2 · (2 · 𝑛)) ∈ ℝ ∧ 0 ≤ (2 · (2 · 𝑛))))
202 resqrtth 15294 . . . . . . . . . . . . . . . 16 (((2 · (2 · 𝑛)) ∈ ℝ ∧ 0 ≤ (2 · (2 · 𝑛))) → ((√‘(2 · (2 · 𝑛)))↑2) = (2 · (2 · 𝑛)))
203201, 202syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((√‘(2 · (2 · 𝑛)))↑2) = (2 · (2 · 𝑛)))
204203oveq2d 7447 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (((√‘(2 · 𝑛))↑4) / ((√‘(2 · (2 · 𝑛)))↑2)) = (((√‘(2 · 𝑛))↑4) / (2 · (2 · 𝑛))))
205 2t2e4 12430 . . . . . . . . . . . . . . . . . . 19 (2 · 2) = 4
206205eqcomi 2746 . . . . . . . . . . . . . . . . . 18 4 = (2 · 2)
207206a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 4 = (2 · 2))
208207oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛))↑4) = ((√‘(2 · 𝑛))↑(2 · 2)))
2099, 53, 53expmuld 14189 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛))↑(2 · 2)) = (((√‘(2 · 𝑛))↑2)↑2))
21022rprege0d 13084 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((2 · 𝑛) ∈ ℝ ∧ 0 ≤ (2 · 𝑛)))
211 resqrtth 15294 . . . . . . . . . . . . . . . . . 18 (((2 · 𝑛) ∈ ℝ ∧ 0 ≤ (2 · 𝑛)) → ((√‘(2 · 𝑛))↑2) = (2 · 𝑛))
212210, 211syl 17 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛))↑2) = (2 · 𝑛))
213212oveq1d 7446 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((√‘(2 · 𝑛))↑2)↑2) = ((2 · 𝑛)↑2))
214208, 209, 2133eqtrd 2781 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛))↑4) = ((2 · 𝑛)↑2))
2156, 6, 7mulassd 11284 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((2 · 2) · 𝑛) = (2 · (2 · 𝑛)))
216205a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (2 · 2) = 4)
217216oveq1d 7446 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((2 · 2) · 𝑛) = (4 · 𝑛))
218215, 217eqtr3d 2779 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (2 · (2 · 𝑛)) = (4 · 𝑛))
219214, 218oveq12d 7449 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (((√‘(2 · 𝑛))↑4) / (2 · (2 · 𝑛))) = (((2 · 𝑛)↑2) / (4 · 𝑛)))
2206, 7sqmuld 14198 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((2 · 𝑛)↑2) = ((2↑2) · (𝑛↑2)))
221 sq2 14236 . . . . . . . . . . . . . . . . . . 19 (2↑2) = 4
222221a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (2↑2) = 4)
223222oveq1d 7446 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((2↑2) · (𝑛↑2)) = (4 · (𝑛↑2)))
224220, 223eqtrd 2777 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((2 · 𝑛)↑2) = (4 · (𝑛↑2)))
225224oveq1d 7446 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((2 · 𝑛)↑2) / (4 · 𝑛)) = ((4 · (𝑛↑2)) / (4 · 𝑛)))
226 4cn 12351 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℂ
227 4ne0 12374 . . . . . . . . . . . . . . . . . . 19 4 ≠ 0
228226, 227dividi 12000 . . . . . . . . . . . . . . . . . 18 (4 / 4) = 1
229228a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (4 / 4) = 1)
2307sqvald 14183 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛↑2) = (𝑛 · 𝑛))
231230oveq1d 7446 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛↑2) / 𝑛) = ((𝑛 · 𝑛) / 𝑛))
2327, 7, 25divcan4d 12049 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛 · 𝑛) / 𝑛) = 𝑛)
233231, 232eqtrd 2777 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((𝑛↑2) / 𝑛) = 𝑛)
234229, 233oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((4 / 4) · ((𝑛↑2) / 𝑛)) = (1 · 𝑛))
23541nn0cnd 12589 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 4 ∈ ℂ)
2367sqcld 14184 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℂ)
237227a1i 11 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → 4 ≠ 0)
238235, 235, 236, 7, 237, 25divmuldivd 12084 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((4 / 4) · ((𝑛↑2) / 𝑛)) = ((4 · (𝑛↑2)) / (4 · 𝑛)))
2397mullidd 11279 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (1 · 𝑛) = 𝑛)
240234, 238, 2393eqtr3d 2785 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((4 · (𝑛↑2)) / (4 · 𝑛)) = 𝑛)
241225, 240eqtrd 2777 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (((2 · 𝑛)↑2) / (4 · 𝑛)) = 𝑛)
242204, 219, 2413eqtrd 2781 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → (((√‘(2 · 𝑛))↑4) / ((√‘(2 · (2 · 𝑛)))↑2)) = 𝑛)
2437, 235mulcomd 11282 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛 · 4) = (4 · 𝑛))
244243oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑛 / e)↑(𝑛 · 4)) = ((𝑛 / e)↑(4 · 𝑛)))
24516, 41, 2expmuld 14189 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑛 / e)↑(𝑛 · 4)) = (((𝑛 / e)↑𝑛)↑4))
2467, 12, 15, 137expdivd 14200 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑛 / e)↑(4 · 𝑛)) = ((𝑛↑(4 · 𝑛)) / (e↑(4 · 𝑛))))
247244, 245, 2463eqtr3d 2785 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (((𝑛 / e)↑𝑛)↑4) = ((𝑛↑(4 · 𝑛)) / (e↑(4 · 𝑛))))
2486, 7, 6mul32d 11471 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((2 · 𝑛) · 2) = ((2 · 2) · 𝑛))
249248, 217eqtrd 2777 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((2 · 𝑛) · 2) = (4 · 𝑛))
250249oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((2 · 𝑛) / e)↑((2 · 𝑛) · 2)) = (((2 · 𝑛) / e)↑(4 · 𝑛)))
25161, 53, 54expmuld 14189 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((2 · 𝑛) / e)↑((2 · 𝑛) · 2)) = ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2))
2528, 12, 15, 137expdivd 14200 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((2 · 𝑛) / e)↑(4 · 𝑛)) = (((2 · 𝑛)↑(4 · 𝑛)) / (e↑(4 · 𝑛))))
253250, 251, 2523eqtr3d 2785 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2) = (((2 · 𝑛)↑(4 · 𝑛)) / (e↑(4 · 𝑛))))
254247, 253oveq12d 7449 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((((𝑛 / e)↑𝑛)↑4) / ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2)) = (((𝑛↑(4 · 𝑛)) / (e↑(4 · 𝑛))) / (((2 · 𝑛)↑(4 · 𝑛)) / (e↑(4 · 𝑛)))))
255247, 194eqeltrrd 2842 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((𝑛↑(4 · 𝑛)) / (e↑(4 · 𝑛))) ∈ ℂ)
2568, 137expcld 14186 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((2 · 𝑛)↑(4 · 𝑛)) ∈ ℂ)
25712, 137expcld 14186 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (e↑(4 · 𝑛)) ∈ ℂ)
25846, 27zmulcld 12728 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (4 · 𝑛) ∈ ℤ)
2598, 69, 258expne0d 14192 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((2 · 𝑛)↑(4 · 𝑛)) ≠ 0)
26012, 15, 258expne0d 14192 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (e↑(4 · 𝑛)) ≠ 0)
261255, 256, 257, 259, 260divdiv2d 12075 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (((𝑛↑(4 · 𝑛)) / (e↑(4 · 𝑛))) / (((2 · 𝑛)↑(4 · 𝑛)) / (e↑(4 · 𝑛)))) = ((((𝑛↑(4 · 𝑛)) / (e↑(4 · 𝑛))) · (e↑(4 · 𝑛))) / ((2 · 𝑛)↑(4 · 𝑛))))
2627, 137expcld 14186 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛↑(4 · 𝑛)) ∈ ℂ)
263262, 257, 260divcan1d 12044 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((𝑛↑(4 · 𝑛)) / (e↑(4 · 𝑛))) · (e↑(4 · 𝑛))) = (𝑛↑(4 · 𝑛)))
264263oveq1d 7446 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((((𝑛↑(4 · 𝑛)) / (e↑(4 · 𝑛))) · (e↑(4 · 𝑛))) / ((2 · 𝑛)↑(4 · 𝑛))) = ((𝑛↑(4 · 𝑛)) / ((2 · 𝑛)↑(4 · 𝑛))))
2656, 7, 137mulexpd 14201 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((2 · 𝑛)↑(4 · 𝑛)) = ((2↑(4 · 𝑛)) · (𝑛↑(4 · 𝑛))))
266265oveq2d 7447 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((𝑛↑(4 · 𝑛)) / ((2 · 𝑛)↑(4 · 𝑛))) = ((𝑛↑(4 · 𝑛)) / ((2↑(4 · 𝑛)) · (𝑛↑(4 · 𝑛)))))
267138, 262mulcomd 11282 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((2↑(4 · 𝑛)) · (𝑛↑(4 · 𝑛))) = ((𝑛↑(4 · 𝑛)) · (2↑(4 · 𝑛))))
268267oveq2d 7447 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → ((𝑛↑(4 · 𝑛)) / ((2↑(4 · 𝑛)) · (𝑛↑(4 · 𝑛)))) = ((𝑛↑(4 · 𝑛)) / ((𝑛↑(4 · 𝑛)) · (2↑(4 · 𝑛)))))
2697, 25, 258expne0d 14192 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑛↑(4 · 𝑛)) ≠ 0)
2706, 68, 258expne0d 14192 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (2↑(4 · 𝑛)) ≠ 0)
271262, 262, 138, 269, 270divdiv1d 12074 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((𝑛↑(4 · 𝑛)) / (𝑛↑(4 · 𝑛))) / (2↑(4 · 𝑛))) = ((𝑛↑(4 · 𝑛)) / ((𝑛↑(4 · 𝑛)) · (2↑(4 · 𝑛)))))
272262, 269dividd 12041 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((𝑛↑(4 · 𝑛)) / (𝑛↑(4 · 𝑛))) = 1)
273272oveq1d 7446 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (((𝑛↑(4 · 𝑛)) / (𝑛↑(4 · 𝑛))) / (2↑(4 · 𝑛))) = (1 / (2↑(4 · 𝑛))))
274268, 271, 2733eqtr2d 2783 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((𝑛↑(4 · 𝑛)) / ((2↑(4 · 𝑛)) · (𝑛↑(4 · 𝑛)))) = (1 / (2↑(4 · 𝑛))))
275264, 266, 2743eqtrd 2781 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ((((𝑛↑(4 · 𝑛)) / (e↑(4 · 𝑛))) · (e↑(4 · 𝑛))) / ((2 · 𝑛)↑(4 · 𝑛))) = (1 / (2↑(4 · 𝑛))))
276254, 261, 2753eqtrd 2781 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((((𝑛 / e)↑𝑛)↑4) / ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2)) = (1 / (2↑(4 · 𝑛))))
277242, 276oveq12d 7449 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((((√‘(2 · 𝑛))↑4) / ((√‘(2 · (2 · 𝑛)))↑2)) · ((((𝑛 / e)↑𝑛)↑4) / ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2))) = (𝑛 · (1 / (2↑(4 · 𝑛)))))
278277oveq2d 7447 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((2↑(4 · 𝑛)) · ((((√‘(2 · 𝑛))↑4) / ((√‘(2 · (2 · 𝑛)))↑2)) · ((((𝑛 / e)↑𝑛)↑4) / ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2)))) = ((2↑(4 · 𝑛)) · (𝑛 · (1 / (2↑(4 · 𝑛))))))
279138, 270reccld 12036 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / (2↑(4 · 𝑛))) ∈ ℂ)
280138, 7, 279mul12d 11470 . . . . . . . . . . 11 (𝑛 ∈ ℕ → ((2↑(4 · 𝑛)) · (𝑛 · (1 / (2↑(4 · 𝑛))))) = (𝑛 · ((2↑(4 · 𝑛)) · (1 / (2↑(4 · 𝑛))))))
2817mulridd 11278 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛)
282138, 270recidd 12038 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((2↑(4 · 𝑛)) · (1 / (2↑(4 · 𝑛)))) = 1)
283282oveq2d 7447 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (𝑛 · ((2↑(4 · 𝑛)) · (1 / (2↑(4 · 𝑛))))) = (𝑛 · 1))
284281, 283, 2333eqtr4d 2787 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (𝑛 · ((2↑(4 · 𝑛)) · (1 / (2↑(4 · 𝑛))))) = ((𝑛↑2) / 𝑛))
285278, 280, 2843eqtrd 2781 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((2↑(4 · 𝑛)) · ((((√‘(2 · 𝑛))↑4) / ((√‘(2 · (2 · 𝑛)))↑2)) · ((((𝑛 / e)↑𝑛)↑4) / ((((2 · 𝑛) / e)↑(2 · 𝑛))↑2)))) = ((𝑛↑2) / 𝑛))
286186, 200, 2853eqtrd 2781 . . . . . . . . 9 (𝑛 ∈ ℕ → (((𝐸𝑛)↑4) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) = ((𝑛↑2) / 𝑛))
287286oveq1d 7446 . . . . . . . 8 (𝑛 ∈ ℕ → ((((𝐸𝑛)↑4) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)) = (((𝑛↑2) / 𝑛) / ((2 · 𝑛) + 1)))
288236, 7, 172, 25, 184divdiv1d 12074 . . . . . . . 8 (𝑛 ∈ ℕ → (((𝑛↑2) / 𝑛) / ((2 · 𝑛) + 1)) = ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
289287, 288eqtrd 2777 . . . . . . 7 (𝑛 ∈ ℕ → ((((𝐸𝑛)↑4) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)) = ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
290289oveq2d 7447 . . . . . 6 (𝑛 ∈ ℕ → ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((((𝐸𝑛)↑4) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1))) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
291185, 290eqtrd 2777 . . . . 5 (𝑛 ∈ ℕ → (((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · (((𝐸𝑛)↑4) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2)))) / ((2 · 𝑛) + 1)) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
292165, 169, 2913eqtrd 2781 . . . 4 (𝑛 ∈ ℕ → ((((((𝐴𝑛)↑4) · ((𝐸𝑛)↑4)) / ((𝐷𝑛)↑2)) · ((2↑(4 · 𝑛)) / ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
293142, 159, 2923eqtrd 2781 . . 3 (𝑛 ∈ ℕ → ((((2↑(4 · 𝑛)) · (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4))) / (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1)) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
294293mpteq2ia 5245 . 2 (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · (((𝐴𝑛)↑4) · ((𝐸𝑛)↑4))) / (((𝐷𝑛)↑2) · ((𝐸‘(2 · 𝑛))↑2))) / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ ↦ ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
2951, 136, 2943eqtri 2769 1 𝑉 = (𝑛 ∈ ℕ ↦ ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cle 11296   / cdiv 11920  cn 12266  2c2 12321  4c4 12323  0cn0 12526  cz 12613  +crp 13034  cexp 14102  !cfa 14312  csqrt 15272  eceu 16098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-e 16104
This theorem is referenced by:  stirlinglem15  46103
  Copyright terms: Public domain W3C validator