MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsunif2 Structured version   Visualization version   GIF version

Theorem mulsunif2 28196
Description: Alternate expression for surreal multiplication. Note from [Conway] p. 19. (Contributed by Scott Fenton, 16-Mar-2025.)
Hypotheses
Ref Expression
mulsunif2.1 (𝜑𝐿 <<s 𝑅)
mulsunif2.2 (𝜑𝑀 <<s 𝑆)
mulsunif2.3 (𝜑𝐴 = (𝐿 |s 𝑅))
mulsunif2.4 (𝜑𝐵 = (𝑀 |s 𝑆))
Assertion
Ref Expression
mulsunif2 (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))})))
Distinct variable groups:   𝐴,𝑎,𝑝,𝑞   𝐴,𝑏,𝑟,𝑠   𝐴,𝑐,𝑡,𝑢   𝐴,𝑑,𝑣,𝑤   𝐵,𝑎,𝑝,𝑞   𝐵,𝑏,𝑟,𝑠   𝐵,𝑐,𝑡,𝑢   𝐵,𝑑,𝑣,𝑤   𝐿,𝑎,𝑝   𝐿,𝑐,𝑡   𝑀,𝑎,𝑝,𝑞   𝑀,𝑑,𝑣,𝑤   𝑅,𝑏   𝑅,𝑑   𝑅,𝑟   𝑣,𝑅   𝑆,𝑏   𝑆,𝑐   𝑆,𝑟,𝑠   𝑡,𝑆,𝑢
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝑅(𝑤,𝑢,𝑡,𝑠,𝑞,𝑝,𝑎,𝑐)   𝑆(𝑤,𝑣,𝑞,𝑝,𝑎,𝑑)   𝐿(𝑤,𝑣,𝑢,𝑠,𝑟,𝑞,𝑏,𝑑)   𝑀(𝑢,𝑡,𝑠,𝑟,𝑏,𝑐)

Proof of Theorem mulsunif2
Dummy variables 𝑒 𝑓 𝑔 𝑖 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulsunif2.1 . . 3 (𝜑𝐿 <<s 𝑅)
2 mulsunif2.2 . . 3 (𝜑𝑀 <<s 𝑆)
3 mulsunif2.3 . . 3 (𝜑𝐴 = (𝐿 |s 𝑅))
4 mulsunif2.4 . . 3 (𝜑𝐵 = (𝑀 |s 𝑆))
51, 2, 3, 4mulsunif2lem 28195 . 2 (𝜑 → (𝐴 ·s 𝐵) = (({𝑒 ∣ ∃𝑖𝐿𝑗𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))} ∪ {𝑓 ∣ ∃𝑘𝑅𝑙𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))}) |s ({𝑔 ∣ ∃𝑚𝐿𝑛𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))} ∪ { ∣ ∃𝑜𝑅𝑥𝑀 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))})))
6 eqeq1 2741 . . . . . . 7 (𝑒 = 𝑎 → (𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))))
762rexbidv 3222 . . . . . 6 (𝑒 = 𝑎 → (∃𝑖𝐿𝑗𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ ∃𝑖𝐿𝑗𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))))
8 oveq2 7439 . . . . . . . . . 10 (𝑖 = 𝑝 → (𝐴 -s 𝑖) = (𝐴 -s 𝑝))
98oveq1d 7446 . . . . . . . . 9 (𝑖 = 𝑝 → ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)) = ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗)))
109oveq2d 7447 . . . . . . . 8 (𝑖 = 𝑝 → ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗))))
1110eqeq2d 2748 . . . . . . 7 (𝑖 = 𝑝 → (𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗)))))
12 oveq2 7439 . . . . . . . . . 10 (𝑗 = 𝑞 → (𝐵 -s 𝑗) = (𝐵 -s 𝑞))
1312oveq2d 7447 . . . . . . . . 9 (𝑗 = 𝑞 → ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗)) = ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))
1413oveq2d 7447 . . . . . . . 8 (𝑗 = 𝑞 → ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗))) = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞))))
1514eqeq2d 2748 . . . . . . 7 (𝑗 = 𝑞 → (𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗))) ↔ 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))))
1611, 15cbvrex2vw 3242 . . . . . 6 (∃𝑖𝐿𝑗𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞))))
177, 16bitrdi 287 . . . . 5 (𝑒 = 𝑎 → (∃𝑖𝐿𝑗𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))))
1817cbvabv 2812 . . . 4 {𝑒 ∣ ∃𝑖𝐿𝑗𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))} = {𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))}
19 eqeq1 2741 . . . . . . 7 (𝑓 = 𝑏 → (𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))))
20192rexbidv 3222 . . . . . 6 (𝑓 = 𝑏 → (∃𝑘𝑅𝑙𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ ∃𝑘𝑅𝑙𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))))
21 oveq1 7438 . . . . . . . . . 10 (𝑘 = 𝑟 → (𝑘 -s 𝐴) = (𝑟 -s 𝐴))
2221oveq1d 7446 . . . . . . . . 9 (𝑘 = 𝑟 → ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)) = ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵)))
2322oveq2d 7447 . . . . . . . 8 (𝑘 = 𝑟 → ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵))))
2423eqeq2d 2748 . . . . . . 7 (𝑘 = 𝑟 → (𝑏 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵)))))
25 oveq1 7438 . . . . . . . . . 10 (𝑙 = 𝑠 → (𝑙 -s 𝐵) = (𝑠 -s 𝐵))
2625oveq2d 7447 . . . . . . . . 9 (𝑙 = 𝑠 → ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵)) = ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))
2726oveq2d 7447 . . . . . . . 8 (𝑙 = 𝑠 → ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵))) = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵))))
2827eqeq2d 2748 . . . . . . 7 (𝑙 = 𝑠 → (𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))))
2924, 28cbvrex2vw 3242 . . . . . 6 (∃𝑘𝑅𝑙𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵))))
3020, 29bitrdi 287 . . . . 5 (𝑓 = 𝑏 → (∃𝑘𝑅𝑙𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))))
3130cbvabv 2812 . . . 4 {𝑓 ∣ ∃𝑘𝑅𝑙𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))} = {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}
3218, 31uneq12i 4166 . . 3 ({𝑒 ∣ ∃𝑖𝐿𝑗𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))} ∪ {𝑓 ∣ ∃𝑘𝑅𝑙𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))}) = ({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))})
33 eqeq1 2741 . . . . . . 7 (𝑔 = 𝑐 → (𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))))
34332rexbidv 3222 . . . . . 6 (𝑔 = 𝑐 → (∃𝑚𝐿𝑛𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ ∃𝑚𝐿𝑛𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))))
35 oveq2 7439 . . . . . . . . . 10 (𝑚 = 𝑡 → (𝐴 -s 𝑚) = (𝐴 -s 𝑡))
3635oveq1d 7446 . . . . . . . . 9 (𝑚 = 𝑡 → ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)) = ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵)))
3736oveq2d 7447 . . . . . . . 8 (𝑚 = 𝑡 → ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵))))
3837eqeq2d 2748 . . . . . . 7 (𝑚 = 𝑡 → (𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵)))))
39 oveq1 7438 . . . . . . . . . 10 (𝑛 = 𝑢 → (𝑛 -s 𝐵) = (𝑢 -s 𝐵))
4039oveq2d 7447 . . . . . . . . 9 (𝑛 = 𝑢 → ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵)) = ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))
4140oveq2d 7447 . . . . . . . 8 (𝑛 = 𝑢 → ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵))) = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))))
4241eqeq2d 2748 . . . . . . 7 (𝑛 = 𝑢 → (𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵))) ↔ 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
4338, 42cbvrex2vw 3242 . . . . . 6 (∃𝑚𝐿𝑛𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))))
4434, 43bitrdi 287 . . . . 5 (𝑔 = 𝑐 → (∃𝑚𝐿𝑛𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
4544cbvabv 2812 . . . 4 {𝑔 ∣ ∃𝑚𝐿𝑛𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))} = {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))}
46 eqeq1 2741 . . . . . . 7 ( = 𝑑 → ( = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))))
47462rexbidv 3222 . . . . . 6 ( = 𝑑 → (∃𝑜𝑅𝑥𝑀 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ ∃𝑜𝑅𝑥𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))))
48 oveq1 7438 . . . . . . . . . 10 (𝑜 = 𝑣 → (𝑜 -s 𝐴) = (𝑣 -s 𝐴))
4948oveq1d 7446 . . . . . . . . 9 (𝑜 = 𝑣 → ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)) = ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥)))
5049oveq2d 7447 . . . . . . . 8 (𝑜 = 𝑣 → ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥))))
5150eqeq2d 2748 . . . . . . 7 (𝑜 = 𝑣 → (𝑑 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥)))))
52 oveq2 7439 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝐵 -s 𝑥) = (𝐵 -s 𝑤))
5352oveq2d 7447 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥)) = ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))
5453oveq2d 7447 . . . . . . . 8 (𝑥 = 𝑤 → ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥))) = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤))))
5554eqeq2d 2748 . . . . . . 7 (𝑥 = 𝑤 → (𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))))
5651, 55cbvrex2vw 3242 . . . . . 6 (∃𝑜𝑅𝑥𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤))))
5747, 56bitrdi 287 . . . . 5 ( = 𝑑 → (∃𝑜𝑅𝑥𝑀 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))))
5857cbvabv 2812 . . . 4 { ∣ ∃𝑜𝑅𝑥𝑀 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))} = {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}
5945, 58uneq12i 4166 . . 3 ({𝑔 ∣ ∃𝑚𝐿𝑛𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))} ∪ { ∣ ∃𝑜𝑅𝑥𝑀 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))}) = ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))})
6032, 59oveq12i 7443 . 2 (({𝑒 ∣ ∃𝑖𝐿𝑗𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))} ∪ {𝑓 ∣ ∃𝑘𝑅𝑙𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))}) |s ({𝑔 ∣ ∃𝑚𝐿𝑛𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))} ∪ { ∣ ∃𝑜𝑅𝑥𝑀 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))})) = (({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))
615, 60eqtrdi 2793 1 (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {cab 2714  wrex 3070  cun 3949   class class class wbr 5143  (class class class)co 7431   <<s csslt 27825   |s cscut 27827   +s cadds 27992   -s csubs 28052   ·s cmuls 28132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-2o 8507  df-nadd 8704  df-no 27687  df-slt 27688  df-bday 27689  df-sle 27790  df-sslt 27826  df-scut 27828  df-0s 27869  df-made 27886  df-old 27887  df-left 27889  df-right 27890  df-norec 27971  df-norec2 27982  df-adds 27993  df-negs 28053  df-subs 28054  df-muls 28133
This theorem is referenced by:  remulscl  28434
  Copyright terms: Public domain W3C validator