MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulsunif2 Structured version   Visualization version   GIF version

Theorem mulsunif2 28211
Description: Alternate expression for surreal multiplication. Note from [Conway] p. 19. (Contributed by Scott Fenton, 16-Mar-2025.)
Hypotheses
Ref Expression
mulsunif2.1 (𝜑𝐿 <<s 𝑅)
mulsunif2.2 (𝜑𝑀 <<s 𝑆)
mulsunif2.3 (𝜑𝐴 = (𝐿 |s 𝑅))
mulsunif2.4 (𝜑𝐵 = (𝑀 |s 𝑆))
Assertion
Ref Expression
mulsunif2 (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))})))
Distinct variable groups:   𝐴,𝑎,𝑝,𝑞   𝐴,𝑏,𝑟,𝑠   𝐴,𝑐,𝑡,𝑢   𝐴,𝑑,𝑣,𝑤   𝐵,𝑎,𝑝,𝑞   𝐵,𝑏,𝑟,𝑠   𝐵,𝑐,𝑡,𝑢   𝐵,𝑑,𝑣,𝑤   𝐿,𝑎,𝑝   𝐿,𝑐,𝑡   𝑀,𝑎,𝑝,𝑞   𝑀,𝑑,𝑣,𝑤   𝑅,𝑏   𝑅,𝑑   𝑅,𝑟   𝑣,𝑅   𝑆,𝑏   𝑆,𝑐   𝑆,𝑟,𝑠   𝑡,𝑆,𝑢
Allowed substitution hints:   𝜑(𝑤,𝑣,𝑢,𝑡,𝑠,𝑟,𝑞,𝑝,𝑎,𝑏,𝑐,𝑑)   𝑅(𝑤,𝑢,𝑡,𝑠,𝑞,𝑝,𝑎,𝑐)   𝑆(𝑤,𝑣,𝑞,𝑝,𝑎,𝑑)   𝐿(𝑤,𝑣,𝑢,𝑠,𝑟,𝑞,𝑏,𝑑)   𝑀(𝑢,𝑡,𝑠,𝑟,𝑏,𝑐)

Proof of Theorem mulsunif2
Dummy variables 𝑒 𝑓 𝑔 𝑖 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulsunif2.1 . . 3 (𝜑𝐿 <<s 𝑅)
2 mulsunif2.2 . . 3 (𝜑𝑀 <<s 𝑆)
3 mulsunif2.3 . . 3 (𝜑𝐴 = (𝐿 |s 𝑅))
4 mulsunif2.4 . . 3 (𝜑𝐵 = (𝑀 |s 𝑆))
51, 2, 3, 4mulsunif2lem 28210 . 2 (𝜑 → (𝐴 ·s 𝐵) = (({𝑒 ∣ ∃𝑖𝐿𝑗𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))} ∪ {𝑓 ∣ ∃𝑘𝑅𝑙𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))}) |s ({𝑔 ∣ ∃𝑚𝐿𝑛𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))} ∪ { ∣ ∃𝑜𝑅𝑥𝑀 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))})))
6 eqeq1 2739 . . . . . . 7 (𝑒 = 𝑎 → (𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))))
762rexbidv 3220 . . . . . 6 (𝑒 = 𝑎 → (∃𝑖𝐿𝑗𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ ∃𝑖𝐿𝑗𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))))
8 oveq2 7439 . . . . . . . . . 10 (𝑖 = 𝑝 → (𝐴 -s 𝑖) = (𝐴 -s 𝑝))
98oveq1d 7446 . . . . . . . . 9 (𝑖 = 𝑝 → ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)) = ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗)))
109oveq2d 7447 . . . . . . . 8 (𝑖 = 𝑝 → ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗))))
1110eqeq2d 2746 . . . . . . 7 (𝑖 = 𝑝 → (𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗)))))
12 oveq2 7439 . . . . . . . . . 10 (𝑗 = 𝑞 → (𝐵 -s 𝑗) = (𝐵 -s 𝑞))
1312oveq2d 7447 . . . . . . . . 9 (𝑗 = 𝑞 → ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗)) = ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))
1413oveq2d 7447 . . . . . . . 8 (𝑗 = 𝑞 → ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗))) = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞))))
1514eqeq2d 2746 . . . . . . 7 (𝑗 = 𝑞 → (𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗))) ↔ 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))))
1611, 15cbvrex2vw 3240 . . . . . 6 (∃𝑖𝐿𝑗𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞))))
177, 16bitrdi 287 . . . . 5 (𝑒 = 𝑎 → (∃𝑖𝐿𝑗𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))))
1817cbvabv 2810 . . . 4 {𝑒 ∣ ∃𝑖𝐿𝑗𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))} = {𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))}
19 eqeq1 2739 . . . . . . 7 (𝑓 = 𝑏 → (𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))))
20192rexbidv 3220 . . . . . 6 (𝑓 = 𝑏 → (∃𝑘𝑅𝑙𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ ∃𝑘𝑅𝑙𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))))
21 oveq1 7438 . . . . . . . . . 10 (𝑘 = 𝑟 → (𝑘 -s 𝐴) = (𝑟 -s 𝐴))
2221oveq1d 7446 . . . . . . . . 9 (𝑘 = 𝑟 → ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)) = ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵)))
2322oveq2d 7447 . . . . . . . 8 (𝑘 = 𝑟 → ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵))))
2423eqeq2d 2746 . . . . . . 7 (𝑘 = 𝑟 → (𝑏 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵)))))
25 oveq1 7438 . . . . . . . . . 10 (𝑙 = 𝑠 → (𝑙 -s 𝐵) = (𝑠 -s 𝐵))
2625oveq2d 7447 . . . . . . . . 9 (𝑙 = 𝑠 → ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵)) = ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))
2726oveq2d 7447 . . . . . . . 8 (𝑙 = 𝑠 → ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵))) = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵))))
2827eqeq2d 2746 . . . . . . 7 (𝑙 = 𝑠 → (𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))))
2924, 28cbvrex2vw 3240 . . . . . 6 (∃𝑘𝑅𝑙𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵))))
3020, 29bitrdi 287 . . . . 5 (𝑓 = 𝑏 → (∃𝑘𝑅𝑙𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))))
3130cbvabv 2810 . . . 4 {𝑓 ∣ ∃𝑘𝑅𝑙𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))} = {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}
3218, 31uneq12i 4176 . . 3 ({𝑒 ∣ ∃𝑖𝐿𝑗𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))} ∪ {𝑓 ∣ ∃𝑘𝑅𝑙𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))}) = ({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))})
33 eqeq1 2739 . . . . . . 7 (𝑔 = 𝑐 → (𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))))
34332rexbidv 3220 . . . . . 6 (𝑔 = 𝑐 → (∃𝑚𝐿𝑛𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ ∃𝑚𝐿𝑛𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))))
35 oveq2 7439 . . . . . . . . . 10 (𝑚 = 𝑡 → (𝐴 -s 𝑚) = (𝐴 -s 𝑡))
3635oveq1d 7446 . . . . . . . . 9 (𝑚 = 𝑡 → ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)) = ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵)))
3736oveq2d 7447 . . . . . . . 8 (𝑚 = 𝑡 → ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵))))
3837eqeq2d 2746 . . . . . . 7 (𝑚 = 𝑡 → (𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵)))))
39 oveq1 7438 . . . . . . . . . 10 (𝑛 = 𝑢 → (𝑛 -s 𝐵) = (𝑢 -s 𝐵))
4039oveq2d 7447 . . . . . . . . 9 (𝑛 = 𝑢 → ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵)) = ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))
4140oveq2d 7447 . . . . . . . 8 (𝑛 = 𝑢 → ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵))) = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))))
4241eqeq2d 2746 . . . . . . 7 (𝑛 = 𝑢 → (𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵))) ↔ 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
4338, 42cbvrex2vw 3240 . . . . . 6 (∃𝑚𝐿𝑛𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))))
4434, 43bitrdi 287 . . . . 5 (𝑔 = 𝑐 → (∃𝑚𝐿𝑛𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
4544cbvabv 2810 . . . 4 {𝑔 ∣ ∃𝑚𝐿𝑛𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))} = {𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))}
46 eqeq1 2739 . . . . . . 7 ( = 𝑑 → ( = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))))
47462rexbidv 3220 . . . . . 6 ( = 𝑑 → (∃𝑜𝑅𝑥𝑀 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ ∃𝑜𝑅𝑥𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))))
48 oveq1 7438 . . . . . . . . . 10 (𝑜 = 𝑣 → (𝑜 -s 𝐴) = (𝑣 -s 𝐴))
4948oveq1d 7446 . . . . . . . . 9 (𝑜 = 𝑣 → ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)) = ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥)))
5049oveq2d 7447 . . . . . . . 8 (𝑜 = 𝑣 → ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥))))
5150eqeq2d 2746 . . . . . . 7 (𝑜 = 𝑣 → (𝑑 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥)))))
52 oveq2 7439 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝐵 -s 𝑥) = (𝐵 -s 𝑤))
5352oveq2d 7447 . . . . . . . . 9 (𝑥 = 𝑤 → ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥)) = ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))
5453oveq2d 7447 . . . . . . . 8 (𝑥 = 𝑤 → ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥))) = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤))))
5554eqeq2d 2746 . . . . . . 7 (𝑥 = 𝑤 → (𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))))
5651, 55cbvrex2vw 3240 . . . . . 6 (∃𝑜𝑅𝑥𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤))))
5747, 56bitrdi 287 . . . . 5 ( = 𝑑 → (∃𝑜𝑅𝑥𝑀 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))))
5857cbvabv 2810 . . . 4 { ∣ ∃𝑜𝑅𝑥𝑀 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))} = {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}
5945, 58uneq12i 4176 . . 3 ({𝑔 ∣ ∃𝑚𝐿𝑛𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))} ∪ { ∣ ∃𝑜𝑅𝑥𝑀 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))}) = ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))})
6032, 59oveq12i 7443 . 2 (({𝑒 ∣ ∃𝑖𝐿𝑗𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))} ∪ {𝑓 ∣ ∃𝑘𝑅𝑙𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))}) |s ({𝑔 ∣ ∃𝑚𝐿𝑛𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))} ∪ { ∣ ∃𝑜𝑅𝑥𝑀 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))})) = (({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))
615, 60eqtrdi 2791 1 (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝𝐿𝑞𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟𝑅𝑠𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡𝐿𝑢𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣𝑅𝑤𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {cab 2712  wrex 3068  cun 3961   class class class wbr 5148  (class class class)co 7431   <<s csslt 27840   |s cscut 27842   +s cadds 28007   -s csubs 28067   ·s cmuls 28147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-1o 8505  df-2o 8506  df-nadd 8703  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843  df-0s 27884  df-made 27901  df-old 27902  df-left 27904  df-right 27905  df-norec 27986  df-norec2 27997  df-adds 28008  df-negs 28068  df-subs 28069  df-muls 28148
This theorem is referenced by:  remulscl  28449
  Copyright terms: Public domain W3C validator