Step | Hyp | Ref
| Expression |
1 | | mulsunif2.1 |
. . 3
⊢ (𝜑 → 𝐿 <<s 𝑅) |
2 | | mulsunif2.2 |
. . 3
⊢ (𝜑 → 𝑀 <<s 𝑆) |
3 | | mulsunif2.3 |
. . 3
⊢ (𝜑 → 𝐴 = (𝐿 |s 𝑅)) |
4 | | mulsunif2.4 |
. . 3
⊢ (𝜑 → 𝐵 = (𝑀 |s 𝑆)) |
5 | 1, 2, 3, 4 | mulsunif2lem 28213 |
. 2
⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑒 ∣ ∃𝑖 ∈ 𝐿 ∃𝑗 ∈ 𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))} ∪ {𝑓 ∣ ∃𝑘 ∈ 𝑅 ∃𝑙 ∈ 𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))}) |s ({𝑔 ∣ ∃𝑚 ∈ 𝐿 ∃𝑛 ∈ 𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))} ∪ {ℎ ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 ℎ = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))}))) |
6 | | eqeq1 2744 |
. . . . . . 7
⊢ (𝑒 = 𝑎 → (𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))))) |
7 | 6 | 2rexbidv 3228 |
. . . . . 6
⊢ (𝑒 = 𝑎 → (∃𝑖 ∈ 𝐿 ∃𝑗 ∈ 𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ ∃𝑖 ∈ 𝐿 ∃𝑗 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))))) |
8 | | oveq2 7456 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑝 → (𝐴 -s 𝑖) = (𝐴 -s 𝑝)) |
9 | 8 | oveq1d 7463 |
. . . . . . . . 9
⊢ (𝑖 = 𝑝 → ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)) = ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗))) |
10 | 9 | oveq2d 7464 |
. . . . . . . 8
⊢ (𝑖 = 𝑝 → ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗)))) |
11 | 10 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑖 = 𝑝 → (𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗))))) |
12 | | oveq2 7456 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑞 → (𝐵 -s 𝑗) = (𝐵 -s 𝑞)) |
13 | 12 | oveq2d 7464 |
. . . . . . . . 9
⊢ (𝑗 = 𝑞 → ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗)) = ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞))) |
14 | 13 | oveq2d 7464 |
. . . . . . . 8
⊢ (𝑗 = 𝑞 → ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗))) = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))) |
15 | 14 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑗 = 𝑞 → (𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑗))) ↔ 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞))))) |
16 | 11, 15 | cbvrex2vw 3248 |
. . . . . 6
⊢
(∃𝑖 ∈
𝐿 ∃𝑗 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))) |
17 | 7, 16 | bitrdi 287 |
. . . . 5
⊢ (𝑒 = 𝑎 → (∃𝑖 ∈ 𝐿 ∃𝑗 ∈ 𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗))) ↔ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞))))) |
18 | 17 | cbvabv 2815 |
. . . 4
⊢ {𝑒 ∣ ∃𝑖 ∈ 𝐿 ∃𝑗 ∈ 𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))} = {𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} |
19 | | eqeq1 2744 |
. . . . . . 7
⊢ (𝑓 = 𝑏 → (𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))))) |
20 | 19 | 2rexbidv 3228 |
. . . . . 6
⊢ (𝑓 = 𝑏 → (∃𝑘 ∈ 𝑅 ∃𝑙 ∈ 𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ ∃𝑘 ∈ 𝑅 ∃𝑙 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))))) |
21 | | oveq1 7455 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑟 → (𝑘 -s 𝐴) = (𝑟 -s 𝐴)) |
22 | 21 | oveq1d 7463 |
. . . . . . . . 9
⊢ (𝑘 = 𝑟 → ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)) = ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵))) |
23 | 22 | oveq2d 7464 |
. . . . . . . 8
⊢ (𝑘 = 𝑟 → ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵)))) |
24 | 23 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑘 = 𝑟 → (𝑏 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵))))) |
25 | | oveq1 7455 |
. . . . . . . . . 10
⊢ (𝑙 = 𝑠 → (𝑙 -s 𝐵) = (𝑠 -s 𝐵)) |
26 | 25 | oveq2d 7464 |
. . . . . . . . 9
⊢ (𝑙 = 𝑠 → ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵)) = ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵))) |
27 | 26 | oveq2d 7464 |
. . . . . . . 8
⊢ (𝑙 = 𝑠 → ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵))) = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))) |
28 | 27 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑙 = 𝑠 → (𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵))))) |
29 | 24, 28 | cbvrex2vw 3248 |
. . . . . 6
⊢
(∃𝑘 ∈
𝑅 ∃𝑙 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))) |
30 | 20, 29 | bitrdi 287 |
. . . . 5
⊢ (𝑓 = 𝑏 → (∃𝑘 ∈ 𝑅 ∃𝑙 ∈ 𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵))) ↔ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵))))) |
31 | 30 | cbvabv 2815 |
. . . 4
⊢ {𝑓 ∣ ∃𝑘 ∈ 𝑅 ∃𝑙 ∈ 𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))} = {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))} |
32 | 18, 31 | uneq12i 4189 |
. . 3
⊢ ({𝑒 ∣ ∃𝑖 ∈ 𝐿 ∃𝑗 ∈ 𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))} ∪ {𝑓 ∣ ∃𝑘 ∈ 𝑅 ∃𝑙 ∈ 𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))}) = ({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |
33 | | eqeq1 2744 |
. . . . . . 7
⊢ (𝑔 = 𝑐 → (𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))))) |
34 | 33 | 2rexbidv 3228 |
. . . . . 6
⊢ (𝑔 = 𝑐 → (∃𝑚 ∈ 𝐿 ∃𝑛 ∈ 𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ ∃𝑚 ∈ 𝐿 ∃𝑛 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))))) |
35 | | oveq2 7456 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑡 → (𝐴 -s 𝑚) = (𝐴 -s 𝑡)) |
36 | 35 | oveq1d 7463 |
. . . . . . . . 9
⊢ (𝑚 = 𝑡 → ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)) = ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵))) |
37 | 36 | oveq2d 7464 |
. . . . . . . 8
⊢ (𝑚 = 𝑡 → ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵)))) |
38 | 37 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑚 = 𝑡 → (𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵))))) |
39 | | oveq1 7455 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑢 → (𝑛 -s 𝐵) = (𝑢 -s 𝐵)) |
40 | 39 | oveq2d 7464 |
. . . . . . . . 9
⊢ (𝑛 = 𝑢 → ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵)) = ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) |
41 | 40 | oveq2d 7464 |
. . . . . . . 8
⊢ (𝑛 = 𝑢 → ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵))) = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) |
42 | 41 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑛 = 𝑢 → (𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑛 -s 𝐵))) ↔ 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))))) |
43 | 38, 42 | cbvrex2vw 3248 |
. . . . . 6
⊢
(∃𝑚 ∈
𝐿 ∃𝑛 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) |
44 | 34, 43 | bitrdi 287 |
. . . . 5
⊢ (𝑔 = 𝑐 → (∃𝑚 ∈ 𝐿 ∃𝑛 ∈ 𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵))) ↔ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))))) |
45 | 44 | cbvabv 2815 |
. . . 4
⊢ {𝑔 ∣ ∃𝑚 ∈ 𝐿 ∃𝑛 ∈ 𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))} = {𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} |
46 | | eqeq1 2744 |
. . . . . . 7
⊢ (ℎ = 𝑑 → (ℎ = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))))) |
47 | 46 | 2rexbidv 3228 |
. . . . . 6
⊢ (ℎ = 𝑑 → (∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 ℎ = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))))) |
48 | | oveq1 7455 |
. . . . . . . . . 10
⊢ (𝑜 = 𝑣 → (𝑜 -s 𝐴) = (𝑣 -s 𝐴)) |
49 | 48 | oveq1d 7463 |
. . . . . . . . 9
⊢ (𝑜 = 𝑣 → ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)) = ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥))) |
50 | 49 | oveq2d 7464 |
. . . . . . . 8
⊢ (𝑜 = 𝑣 → ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥)))) |
51 | 50 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑜 = 𝑣 → (𝑑 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥))))) |
52 | | oveq2 7456 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → (𝐵 -s 𝑥) = (𝐵 -s 𝑤)) |
53 | 52 | oveq2d 7464 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥)) = ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤))) |
54 | 53 | oveq2d 7464 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥))) = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))) |
55 | 54 | eqeq2d 2751 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤))))) |
56 | 51, 55 | cbvrex2vw 3248 |
. . . . . 6
⊢
(∃𝑜 ∈
𝑅 ∃𝑥 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))) |
57 | 47, 56 | bitrdi 287 |
. . . . 5
⊢ (ℎ = 𝑑 → (∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 ℎ = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥))) ↔ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤))))) |
58 | 57 | cbvabv 2815 |
. . . 4
⊢ {ℎ ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 ℎ = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))} = {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))} |
59 | 45, 58 | uneq12i 4189 |
. . 3
⊢ ({𝑔 ∣ ∃𝑚 ∈ 𝐿 ∃𝑛 ∈ 𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))} ∪ {ℎ ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 ℎ = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))}) = ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}) |
60 | 32, 59 | oveq12i 7460 |
. 2
⊢ (({𝑒 ∣ ∃𝑖 ∈ 𝐿 ∃𝑗 ∈ 𝑀 𝑒 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑖) ·s (𝐵 -s 𝑗)))} ∪ {𝑓 ∣ ∃𝑘 ∈ 𝑅 ∃𝑙 ∈ 𝑆 𝑓 = ((𝐴 ·s 𝐵) -s ((𝑘 -s 𝐴) ·s (𝑙 -s 𝐵)))}) |s ({𝑔 ∣ ∃𝑚 ∈ 𝐿 ∃𝑛 ∈ 𝑆 𝑔 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑚) ·s (𝑛 -s 𝐵)))} ∪ {ℎ ∣ ∃𝑜 ∈ 𝑅 ∃𝑥 ∈ 𝑀 ℎ = ((𝐴 ·s 𝐵) +s ((𝑜 -s 𝐴) ·s (𝐵 -s 𝑥)))})) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))})) |
61 | 5, 60 | eqtrdi 2796 |
1
⊢ (𝜑 → (𝐴 ·s 𝐵) = (({𝑎 ∣ ∃𝑝 ∈ 𝐿 ∃𝑞 ∈ 𝑀 𝑎 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑝) ·s (𝐵 -s 𝑞)))} ∪ {𝑏 ∣ ∃𝑟 ∈ 𝑅 ∃𝑠 ∈ 𝑆 𝑏 = ((𝐴 ·s 𝐵) -s ((𝑟 -s 𝐴) ·s (𝑠 -s 𝐵)))}) |s ({𝑐 ∣ ∃𝑡 ∈ 𝐿 ∃𝑢 ∈ 𝑆 𝑐 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑑 ∣ ∃𝑣 ∈ 𝑅 ∃𝑤 ∈ 𝑀 𝑑 = ((𝐴 ·s 𝐵) +s ((𝑣 -s 𝐴) ·s (𝐵 -s 𝑤)))}))) |