![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negexsr | Structured version Visualization version GIF version |
Description: Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
negexsr | ⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m1r 11116 | . . 3 ⊢ -1R ∈ R | |
2 | mulclsr 11118 | . . 3 ⊢ ((𝐴 ∈ R ∧ -1R ∈ R) → (𝐴 ·R -1R) ∈ R) | |
3 | 1, 2 | mpan2 689 | . 2 ⊢ (𝐴 ∈ R → (𝐴 ·R -1R) ∈ R) |
4 | pn0sr 11135 | . 2 ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | |
5 | oveq2 7424 | . . . 4 ⊢ (𝑥 = (𝐴 ·R -1R) → (𝐴 +R 𝑥) = (𝐴 +R (𝐴 ·R -1R))) | |
6 | 5 | eqeq1d 2728 | . . 3 ⊢ (𝑥 = (𝐴 ·R -1R) → ((𝐴 +R 𝑥) = 0R ↔ (𝐴 +R (𝐴 ·R -1R)) = 0R)) |
7 | 6 | rspcev 3607 | . 2 ⊢ (((𝐴 ·R -1R) ∈ R ∧ (𝐴 +R (𝐴 ·R -1R)) = 0R) → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) |
8 | 3, 4, 7 | syl2anc 582 | 1 ⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ∃wrex 3060 (class class class)co 7416 Rcnr 10899 0Rc0r 10900 -1Rcm1r 10902 +R cplr 10903 ·R cmr 10904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-inf2 9677 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-oadd 8492 df-omul 8493 df-er 8726 df-ec 8728 df-qs 8732 df-ni 10906 df-pli 10907 df-mi 10908 df-lti 10909 df-plpq 10942 df-mpq 10943 df-ltpq 10944 df-enq 10945 df-nq 10946 df-erq 10947 df-plq 10948 df-mq 10949 df-1nq 10950 df-rq 10951 df-ltnq 10952 df-np 11015 df-1p 11016 df-plp 11017 df-mp 11018 df-ltp 11019 df-enr 11089 df-nr 11090 df-plr 11091 df-mr 11092 df-0r 11094 df-1r 11095 df-m1r 11096 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |