MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negexsr Structured version   Visualization version   GIF version

Theorem negexsr 11173
Description: Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
negexsr (𝐴R → ∃𝑥R (𝐴 +R 𝑥) = 0R)
Distinct variable group:   𝑥,𝐴

Proof of Theorem negexsr
StepHypRef Expression
1 m1r 11153 . . 3 -1RR
2 mulclsr 11155 . . 3 ((𝐴R ∧ -1RR) → (𝐴 ·R -1R) ∈ R)
31, 2mpan2 690 . 2 (𝐴R → (𝐴 ·R -1R) ∈ R)
4 pn0sr 11172 . 2 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
5 oveq2 7458 . . . 4 (𝑥 = (𝐴 ·R -1R) → (𝐴 +R 𝑥) = (𝐴 +R (𝐴 ·R -1R)))
65eqeq1d 2742 . . 3 (𝑥 = (𝐴 ·R -1R) → ((𝐴 +R 𝑥) = 0R ↔ (𝐴 +R (𝐴 ·R -1R)) = 0R))
76rspcev 3635 . 2 (((𝐴 ·R -1R) ∈ R ∧ (𝐴 +R (𝐴 ·R -1R)) = 0R) → ∃𝑥R (𝐴 +R 𝑥) = 0R)
83, 4, 7syl2anc 583 1 (𝐴R → ∃𝑥R (𝐴 +R 𝑥) = 0R)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wrex 3076  (class class class)co 7450  Rcnr 10936  0Rc0r 10937  -1Rcm1r 10939   +R cplr 10940   ·R cmr 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772  ax-inf2 9712
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-1o 8524  df-oadd 8528  df-omul 8529  df-er 8765  df-ec 8767  df-qs 8771  df-ni 10943  df-pli 10944  df-mi 10945  df-lti 10946  df-plpq 10979  df-mpq 10980  df-ltpq 10981  df-enq 10982  df-nq 10983  df-erq 10984  df-plq 10985  df-mq 10986  df-1nq 10987  df-rq 10988  df-ltnq 10989  df-np 11052  df-1p 11053  df-plp 11054  df-mp 11055  df-ltp 11056  df-enr 11126  df-nr 11127  df-plr 11128  df-mr 11129  df-0r 11131  df-1r 11132  df-m1r 11133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator