![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pn0sr | Structured version Visualization version GIF version |
Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pn0sr | ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1idsr 11095 | . . 3 ⊢ (𝐴 ∈ R → (𝐴 ·R 1R) = 𝐴) | |
2 | 1 | oveq1d 7426 | . 2 ⊢ (𝐴 ∈ R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = (𝐴 +R (𝐴 ·R -1R))) |
3 | distrsr 11088 | . . . 4 ⊢ (𝐴 ·R (-1R +R 1R)) = ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) | |
4 | m1p1sr 11089 | . . . . 5 ⊢ (-1R +R 1R) = 0R | |
5 | 4 | oveq2i 7422 | . . . 4 ⊢ (𝐴 ·R (-1R +R 1R)) = (𝐴 ·R 0R) |
6 | addcomsr 11084 | . . . 4 ⊢ ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) | |
7 | 3, 5, 6 | 3eqtr3i 2768 | . . 3 ⊢ (𝐴 ·R 0R) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) |
8 | 00sr 11096 | . . 3 ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | |
9 | 7, 8 | eqtr3id 2786 | . 2 ⊢ (𝐴 ∈ R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = 0R) |
10 | 2, 9 | eqtr3d 2774 | 1 ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 (class class class)co 7411 Rcnr 10862 0Rc0r 10863 1Rc1r 10864 -1Rcm1r 10865 +R cplr 10866 ·R cmr 10867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-omul 8473 df-er 8705 df-ec 8707 df-qs 8711 df-ni 10869 df-pli 10870 df-mi 10871 df-lti 10872 df-plpq 10905 df-mpq 10906 df-ltpq 10907 df-enq 10908 df-nq 10909 df-erq 10910 df-plq 10911 df-mq 10912 df-1nq 10913 df-rq 10914 df-ltnq 10915 df-np 10978 df-1p 10979 df-plp 10980 df-mp 10981 df-ltp 10982 df-enr 11052 df-nr 11053 df-plr 11054 df-mr 11055 df-0r 11057 df-1r 11058 df-m1r 11059 |
This theorem is referenced by: negexsr 11099 sqgt0sr 11103 map2psrpr 11107 axrnegex 11159 |
Copyright terms: Public domain | W3C validator |