MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pn0sr Structured version   Visualization version   GIF version

Theorem pn0sr 11141
Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
pn0sr (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)

Proof of Theorem pn0sr
StepHypRef Expression
1 1idsr 11138 . . 3 (𝐴R → (𝐴 ·R 1R) = 𝐴)
21oveq1d 7446 . 2 (𝐴R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = (𝐴 +R (𝐴 ·R -1R)))
3 distrsr 11131 . . . 4 (𝐴 ·R (-1R +R 1R)) = ((𝐴 ·R -1R) +R (𝐴 ·R 1R))
4 m1p1sr 11132 . . . . 5 (-1R +R 1R) = 0R
54oveq2i 7442 . . . 4 (𝐴 ·R (-1R +R 1R)) = (𝐴 ·R 0R)
6 addcomsr 11127 . . . 4 ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R))
73, 5, 63eqtr3i 2773 . . 3 (𝐴 ·R 0R) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R))
8 00sr 11139 . . 3 (𝐴R → (𝐴 ·R 0R) = 0R)
97, 8eqtr3id 2791 . 2 (𝐴R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = 0R)
102, 9eqtr3d 2779 1 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  (class class class)co 7431  Rcnr 10905  0Rc0r 10906  1Rc1r 10907  -1Rcm1r 10908   +R cplr 10909   ·R cmr 10910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-ni 10912  df-pli 10913  df-mi 10914  df-lti 10915  df-plpq 10948  df-mpq 10949  df-ltpq 10950  df-enq 10951  df-nq 10952  df-erq 10953  df-plq 10954  df-mq 10955  df-1nq 10956  df-rq 10957  df-ltnq 10958  df-np 11021  df-1p 11022  df-plp 11023  df-mp 11024  df-ltp 11025  df-enr 11095  df-nr 11096  df-plr 11097  df-mr 11098  df-0r 11100  df-1r 11101  df-m1r 11102
This theorem is referenced by:  negexsr  11142  sqgt0sr  11146  map2psrpr  11150  axrnegex  11202
  Copyright terms: Public domain W3C validator