MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pn0sr Structured version   Visualization version   GIF version

Theorem pn0sr 10369
Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
pn0sr (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)

Proof of Theorem pn0sr
StepHypRef Expression
1 1idsr 10366 . . 3 (𝐴R → (𝐴 ·R 1R) = 𝐴)
21oveq1d 7031 . 2 (𝐴R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = (𝐴 +R (𝐴 ·R -1R)))
3 distrsr 10359 . . . 4 (𝐴 ·R (-1R +R 1R)) = ((𝐴 ·R -1R) +R (𝐴 ·R 1R))
4 m1p1sr 10360 . . . . 5 (-1R +R 1R) = 0R
54oveq2i 7027 . . . 4 (𝐴 ·R (-1R +R 1R)) = (𝐴 ·R 0R)
6 addcomsr 10355 . . . 4 ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R))
73, 5, 63eqtr3i 2827 . . 3 (𝐴 ·R 0R) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R))
8 00sr 10367 . . 3 (𝐴R → (𝐴 ·R 0R) = 0R)
97, 8syl5eqr 2845 . 2 (𝐴R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = 0R)
102, 9eqtr3d 2833 1 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1522  wcel 2081  (class class class)co 7016  Rcnr 10133  0Rc0r 10134  1Rc1r 10135  -1Rcm1r 10136   +R cplr 10137   ·R cmr 10138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-omul 7958  df-er 8139  df-ec 8141  df-qs 8145  df-ni 10140  df-pli 10141  df-mi 10142  df-lti 10143  df-plpq 10176  df-mpq 10177  df-ltpq 10178  df-enq 10179  df-nq 10180  df-erq 10181  df-plq 10182  df-mq 10183  df-1nq 10184  df-rq 10185  df-ltnq 10186  df-np 10249  df-1p 10250  df-plp 10251  df-mp 10252  df-ltp 10253  df-enr 10323  df-nr 10324  df-plr 10325  df-mr 10326  df-0r 10328  df-1r 10329  df-m1r 10330
This theorem is referenced by:  negexsr  10370  sqgt0sr  10374  map2psrpr  10378  axrnegex  10430
  Copyright terms: Public domain W3C validator