MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pn0sr Structured version   Visualization version   GIF version

Theorem pn0sr 10857
Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
pn0sr (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)

Proof of Theorem pn0sr
StepHypRef Expression
1 1idsr 10854 . . 3 (𝐴R → (𝐴 ·R 1R) = 𝐴)
21oveq1d 7290 . 2 (𝐴R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = (𝐴 +R (𝐴 ·R -1R)))
3 distrsr 10847 . . . 4 (𝐴 ·R (-1R +R 1R)) = ((𝐴 ·R -1R) +R (𝐴 ·R 1R))
4 m1p1sr 10848 . . . . 5 (-1R +R 1R) = 0R
54oveq2i 7286 . . . 4 (𝐴 ·R (-1R +R 1R)) = (𝐴 ·R 0R)
6 addcomsr 10843 . . . 4 ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R))
73, 5, 63eqtr3i 2774 . . 3 (𝐴 ·R 0R) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R))
8 00sr 10855 . . 3 (𝐴R → (𝐴 ·R 0R) = 0R)
97, 8eqtr3id 2792 . 2 (𝐴R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = 0R)
102, 9eqtr3d 2780 1 (𝐴R → (𝐴 +R (𝐴 ·R -1R)) = 0R)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  (class class class)co 7275  Rcnr 10621  0Rc0r 10622  1Rc1r 10623  -1Rcm1r 10624   +R cplr 10625   ·R cmr 10626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-ec 8500  df-qs 8504  df-ni 10628  df-pli 10629  df-mi 10630  df-lti 10631  df-plpq 10664  df-mpq 10665  df-ltpq 10666  df-enq 10667  df-nq 10668  df-erq 10669  df-plq 10670  df-mq 10671  df-1nq 10672  df-rq 10673  df-ltnq 10674  df-np 10737  df-1p 10738  df-plp 10739  df-mp 10740  df-ltp 10741  df-enr 10811  df-nr 10812  df-plr 10813  df-mr 10814  df-0r 10816  df-1r 10817  df-m1r 10818
This theorem is referenced by:  negexsr  10858  sqgt0sr  10862  map2psrpr  10866  axrnegex  10918
  Copyright terms: Public domain W3C validator