| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pn0sr | Structured version Visualization version GIF version | ||
| Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pn0sr | ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1idsr 10989 | . . 3 ⊢ (𝐴 ∈ R → (𝐴 ·R 1R) = 𝐴) | |
| 2 | 1 | oveq1d 7361 | . 2 ⊢ (𝐴 ∈ R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = (𝐴 +R (𝐴 ·R -1R))) |
| 3 | distrsr 10982 | . . . 4 ⊢ (𝐴 ·R (-1R +R 1R)) = ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) | |
| 4 | m1p1sr 10983 | . . . . 5 ⊢ (-1R +R 1R) = 0R | |
| 5 | 4 | oveq2i 7357 | . . . 4 ⊢ (𝐴 ·R (-1R +R 1R)) = (𝐴 ·R 0R) |
| 6 | addcomsr 10978 | . . . 4 ⊢ ((𝐴 ·R -1R) +R (𝐴 ·R 1R)) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) | |
| 7 | 3, 5, 6 | 3eqtr3i 2762 | . . 3 ⊢ (𝐴 ·R 0R) = ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) |
| 8 | 00sr 10990 | . . 3 ⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | |
| 9 | 7, 8 | eqtr3id 2780 | . 2 ⊢ (𝐴 ∈ R → ((𝐴 ·R 1R) +R (𝐴 ·R -1R)) = 0R) |
| 10 | 2, 9 | eqtr3d 2768 | 1 ⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 Rcnr 10756 0Rc0r 10757 1Rc1r 10758 -1Rcm1r 10759 +R cplr 10760 ·R cmr 10761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-ec 8624 df-qs 8628 df-ni 10763 df-pli 10764 df-mi 10765 df-lti 10766 df-plpq 10799 df-mpq 10800 df-ltpq 10801 df-enq 10802 df-nq 10803 df-erq 10804 df-plq 10805 df-mq 10806 df-1nq 10807 df-rq 10808 df-ltnq 10809 df-np 10872 df-1p 10873 df-plp 10874 df-mp 10875 df-ltp 10876 df-enr 10946 df-nr 10947 df-plr 10948 df-mr 10949 df-0r 10951 df-1r 10952 df-m1r 10953 |
| This theorem is referenced by: negexsr 10993 sqgt0sr 10997 map2psrpr 11001 axrnegex 11053 |
| Copyright terms: Public domain | W3C validator |