Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subge0d | Structured version Visualization version GIF version |
Description: Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
subge0d | ⊢ (𝜑 → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | subge0 11418 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 ≤ cle 10941 − cmin 11135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 |
This theorem is referenced by: ofsubge0 11902 uzsubsubfz 13207 modsubdir 13588 modsumfzodifsn 13592 serle 13706 discr 13883 bcval5 13960 fzomaxdiflem 14982 sqreulem 14999 amgm2 15009 climle 15277 rlimle 15287 iseralt 15324 fsumle 15439 cvgcmp 15456 binomrisefac 15680 smuval2 16117 pcz 16510 4sqlem15 16588 mndodconglem 19064 ipcau2 24303 pjthlem1 24506 ovolicc2lem4 24589 vitalilem2 24678 itg1lea 24782 dvlip 25062 dvge0 25075 dvle 25076 dvivthlem1 25077 dvfsumlem2 25096 dvfsumlem4 25098 loglesqrt 25816 emcllem6 26055 harmoniclbnd 26063 basellem9 26143 gausslemma2dlem0h 26416 lgseisenlem1 26428 2sqmod 26489 vmadivsum 26535 rplogsumlem1 26537 dchrisumlem2 26543 rplogsum 26580 vmalogdivsum2 26591 selberg2lem 26603 logdivbnd 26609 pntpbnd2 26640 pntibndlem2 26644 pntlemg 26651 pntlemn 26653 ttgcontlem1 27155 brbtwn2 27176 axpaschlem 27211 axcontlem8 27242 crctcsh 28090 clwlkclwwlklem2a1 28257 clwlkclwwlklem2fv2 28261 pjhthlem1 29654 leop2 30387 pjssposi 30435 fdvposle 32481 rddif2 34584 dnibndlem4 34588 broucube 35738 areacirclem2 35793 areacirclem4 35795 areacirclem5 35796 areacirc 35797 metakunt29 40081 acongrep 40718 sqrtcvallem2 41134 sqrtcvallem4 41136 lptre2pt 43071 dvnmul 43374 dvnprodlem1 43377 dvnprodlem2 43378 stoweidlem1 43432 stoweidlem26 43457 stoweidlem62 43493 wallispilem4 43499 fourierdlem26 43564 fourierdlem42 43580 fourierdlem65 43602 fourierdlem75 43612 elaa2lem 43664 etransclem3 43668 etransclem7 43672 etransclem10 43675 etransclem20 43685 etransclem21 43686 etransclem22 43687 etransclem24 43689 etransclem27 43692 hoidmvlelem1 44023 nnpw2pmod 45817 2itscp 46015 |
Copyright terms: Public domain | W3C validator |