Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subge0d | Structured version Visualization version GIF version |
Description: Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
subge0d | ⊢ (𝜑 → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | subge0 11192 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | |
4 | 1, 2, 3 | syl2anc 588 | 1 ⊢ (𝜑 → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2112 class class class wbr 5033 (class class class)co 7151 ℝcr 10575 0cc0 10576 ≤ cle 10715 − cmin 10909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 |
This theorem is referenced by: ofsubge0 11674 uzsubsubfz 12979 modsubdir 13358 modsumfzodifsn 13362 serle 13476 discr 13652 bcval5 13729 fzomaxdiflem 14751 sqreulem 14768 amgm2 14778 climle 15045 rlimle 15053 iseralt 15090 fsumle 15203 cvgcmp 15220 binomrisefac 15445 smuval2 15882 pcz 16273 4sqlem15 16351 mndodconglem 18737 ipcau2 23935 pjthlem1 24138 ovolicc2lem4 24221 vitalilem2 24310 itg1lea 24413 dvlip 24693 dvge0 24706 dvle 24707 dvivthlem1 24708 dvfsumlem2 24727 dvfsumlem4 24729 loglesqrt 25447 emcllem6 25686 harmoniclbnd 25694 basellem9 25774 gausslemma2dlem0h 26047 lgseisenlem1 26059 2sqmod 26120 vmadivsum 26166 rplogsumlem1 26168 dchrisumlem2 26174 rplogsum 26211 vmalogdivsum2 26222 selberg2lem 26234 logdivbnd 26240 pntpbnd2 26271 pntibndlem2 26275 pntlemg 26282 pntlemn 26284 ttgcontlem1 26779 brbtwn2 26799 axpaschlem 26834 axcontlem8 26865 crctcsh 27710 clwlkclwwlklem2a1 27877 clwlkclwwlklem2fv2 27881 pjhthlem1 29274 leop2 30007 pjssposi 30055 fdvposle 32101 rddif2 34207 dnibndlem4 34211 broucube 35372 areacirclem2 35427 areacirclem4 35429 areacirclem5 35430 areacirc 35431 metakunt29 39676 acongrep 40295 sqrtcvallem2 40711 sqrtcvallem4 40713 lptre2pt 42649 dvnmul 42952 dvnprodlem1 42955 dvnprodlem2 42956 stoweidlem1 43010 stoweidlem26 43035 stoweidlem62 43071 wallispilem4 43077 fourierdlem26 43142 fourierdlem42 43158 fourierdlem65 43180 fourierdlem75 43190 elaa2lem 43242 etransclem3 43246 etransclem7 43250 etransclem10 43253 etransclem20 43263 etransclem21 43264 etransclem22 43265 etransclem24 43267 etransclem27 43270 hoidmvlelem1 43601 nnpw2pmod 45363 2itscp 45561 |
Copyright terms: Public domain | W3C validator |