Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subge0d | Structured version Visualization version GIF version |
Description: Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
subge0d | ⊢ (𝜑 → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | subge0 11488 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) | |
4 | 1, 2, 3 | syl2anc 584 | 1 ⊢ (𝜑 → (0 ≤ (𝐴 − 𝐵) ↔ 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 0cc0 10871 ≤ cle 11010 − cmin 11205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 |
This theorem is referenced by: ofsubge0 11972 uzsubsubfz 13278 modsubdir 13660 modsumfzodifsn 13664 serle 13778 discr 13955 bcval5 14032 fzomaxdiflem 15054 sqreulem 15071 amgm2 15081 climle 15349 rlimle 15359 iseralt 15396 fsumle 15511 cvgcmp 15528 binomrisefac 15752 smuval2 16189 pcz 16582 4sqlem15 16660 mndodconglem 19149 ipcau2 24398 pjthlem1 24601 ovolicc2lem4 24684 vitalilem2 24773 itg1lea 24877 dvlip 25157 dvge0 25170 dvle 25171 dvivthlem1 25172 dvfsumlem2 25191 dvfsumlem4 25193 loglesqrt 25911 emcllem6 26150 harmoniclbnd 26158 basellem9 26238 gausslemma2dlem0h 26511 lgseisenlem1 26523 2sqmod 26584 vmadivsum 26630 rplogsumlem1 26632 dchrisumlem2 26638 rplogsum 26675 vmalogdivsum2 26686 selberg2lem 26698 logdivbnd 26704 pntpbnd2 26735 pntibndlem2 26739 pntlemg 26746 pntlemn 26748 ttgcontlem1 27252 brbtwn2 27273 axpaschlem 27308 axcontlem8 27339 crctcsh 28189 clwlkclwwlklem2a1 28356 clwlkclwwlklem2fv2 28360 pjhthlem1 29753 leop2 30486 pjssposi 30534 fdvposle 32581 rddif2 34657 dnibndlem4 34661 broucube 35811 areacirclem2 35866 areacirclem4 35868 areacirclem5 35869 areacirc 35870 metakunt29 40153 acongrep 40802 sqrtcvallem2 41245 sqrtcvallem4 41247 lptre2pt 43181 dvnmul 43484 dvnprodlem1 43487 dvnprodlem2 43488 stoweidlem1 43542 stoweidlem26 43567 stoweidlem62 43603 wallispilem4 43609 fourierdlem26 43674 fourierdlem42 43690 fourierdlem65 43712 fourierdlem75 43722 elaa2lem 43774 etransclem3 43778 etransclem7 43782 etransclem10 43785 etransclem20 43795 etransclem21 43796 etransclem22 43797 etransclem24 43799 etransclem27 43802 hoidmvlelem1 44133 nnpw2pmod 45929 2itscp 46127 |
Copyright terms: Public domain | W3C validator |