| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1lmod | Structured version Visualization version GIF version | ||
| Description: Univariate polynomials form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1lmod.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| Ref | Expression |
|---|---|
| ply1lmod | ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 2 | 1 | psr1lmod 22184 | . 2 ⊢ (𝑅 ∈ Ring → (PwSer1‘𝑅) ∈ LMod) |
| 3 | eqid 2735 | . . . 4 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 4 | eqid 2735 | . . . 4 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
| 5 | 3, 4 | ply1bas 22130 | . . 3 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(1o mPoly 𝑅)) |
| 6 | 3, 1, 4 | ply1lss 22132 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(Poly1‘𝑅)) ∈ (LSubSp‘(PwSer1‘𝑅))) |
| 7 | 5, 6 | eqeltrrid 2839 | . 2 ⊢ (𝑅 ∈ Ring → (Base‘(1o mPoly 𝑅)) ∈ (LSubSp‘(PwSer1‘𝑅))) |
| 8 | ply1lmod.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 9 | 8, 1 | ply1val 22129 | . . 3 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
| 10 | eqid 2735 | . . 3 ⊢ (LSubSp‘(PwSer1‘𝑅)) = (LSubSp‘(PwSer1‘𝑅)) | |
| 11 | 9, 10 | lsslmod 20917 | . 2 ⊢ (((PwSer1‘𝑅) ∈ LMod ∧ (Base‘(1o mPoly 𝑅)) ∈ (LSubSp‘(PwSer1‘𝑅))) → 𝑃 ∈ LMod) |
| 12 | 2, 7, 11 | syl2anc 584 | 1 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 1oc1o 8473 Basecbs 17228 Ringcrg 20193 LModclmod 20817 LSubSpclss 20888 mPoly cmpl 21866 PwSer1cps1 22110 Poly1cpl1 22112 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-prds 17461 df-pws 17463 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-lmod 20819 df-lss 20889 df-psr 21869 df-mpl 21871 df-opsr 21873 df-psr1 22115 df-ply1 22117 |
| This theorem is referenced by: ply1ascl0 22190 ply1ascl1 22191 ply10s0 22193 ply1tmcl 22209 coe1pwmul 22216 ply1sclf 22222 ply1scl0 22227 ply1scl0OLD 22228 ply1scl1 22230 ply1scl1OLD 22231 ply1idvr1OLD 22233 ply1coefsupp 22235 ply1coe 22236 cply1coe0bi 22240 gsumsmonply1 22245 gsummoncoe1 22246 lply1binomsc 22249 evls1sca 22261 evl1scvarpw 22301 evl1gsummon 22303 evls1fpws 22307 evls1vsca 22311 asclply1subcl 22312 evls1maplmhm 22315 cpmatacl 22654 cpmatinvcl 22655 mat2pmatbas 22664 mat2pmatghm 22668 mat2pmatmul 22669 decpmatid 22708 pmatcollpwscmatlem1 22727 pm2mpcl 22735 idpm2idmp 22739 mply1topmatcllem 22741 mply1topmatcl 22743 mp2pm2mplem4 22747 mp2pm2mplem5 22748 pm2mpghmlem2 22750 pm2mpghm 22754 pm2mpmhmlem1 22756 pm2mpmhmlem2 22757 monmat2matmon 22762 chpscmat 22780 chpscmatgsumbin 22782 chpscmatgsummon 22783 deg1invg 26063 deg1pwle 26077 deg1pw 26078 ply1remlem 26122 plypf1 26169 ply1lvec 33572 ressasclcl 33584 coe1mon 33598 deg1vr 33602 ply1degltlss 33606 gsummoncoe1fzo 33607 q1pvsca 33613 r1pvsca 33614 r1p0 33615 r1plmhm 33619 irngnzply1lem 33731 2sqr3minply 33814 cos9thpiminplylem6 33821 cos9thpiminply 33822 aks5lem2 42200 ply1vr1smo 48358 ply1mulgsumlem4 48365 ply1mulgsum 48366 |
| Copyright terms: Public domain | W3C validator |