![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1lmod | Structured version Visualization version GIF version |
Description: Univariate polynomials form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
ply1lmod.p | ⊢ 𝑃 = (Poly1‘𝑅) |
Ref | Expression |
---|---|
ply1lmod | ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
2 | 1 | psr1lmod 22266 | . 2 ⊢ (𝑅 ∈ Ring → (PwSer1‘𝑅) ∈ LMod) |
3 | eqid 2735 | . . . 4 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
4 | eqid 2735 | . . . 4 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
5 | 3, 4 | ply1bas 22212 | . . 3 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(1o mPoly 𝑅)) |
6 | 3, 1, 4 | ply1lss 22214 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(Poly1‘𝑅)) ∈ (LSubSp‘(PwSer1‘𝑅))) |
7 | 5, 6 | eqeltrrid 2844 | . 2 ⊢ (𝑅 ∈ Ring → (Base‘(1o mPoly 𝑅)) ∈ (LSubSp‘(PwSer1‘𝑅))) |
8 | ply1lmod.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
9 | 8, 1 | ply1val 22211 | . . 3 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
10 | eqid 2735 | . . 3 ⊢ (LSubSp‘(PwSer1‘𝑅)) = (LSubSp‘(PwSer1‘𝑅)) | |
11 | 9, 10 | lsslmod 20976 | . 2 ⊢ (((PwSer1‘𝑅) ∈ LMod ∧ (Base‘(1o mPoly 𝑅)) ∈ (LSubSp‘(PwSer1‘𝑅))) → 𝑃 ∈ LMod) |
12 | 2, 7, 11 | syl2anc 584 | 1 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 1oc1o 8498 Basecbs 17245 Ringcrg 20251 LModclmod 20875 LSubSpclss 20947 mPoly cmpl 21944 PwSer1cps1 22192 Poly1cpl1 22194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-prds 17494 df-pws 17496 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-lmod 20877 df-lss 20948 df-psr 21947 df-mpl 21949 df-opsr 21951 df-psr1 22197 df-ply1 22199 |
This theorem is referenced by: ply1ascl0 22272 ply1ascl1 22273 ply10s0 22275 ply1tmcl 22291 coe1pwmul 22298 ply1sclf 22304 ply1scl0 22309 ply1scl0OLD 22310 ply1scl1 22312 ply1scl1OLD 22313 ply1idvr1OLD 22315 ply1coefsupp 22317 ply1coe 22318 cply1coe0bi 22322 gsumsmonply1 22327 gsummoncoe1 22328 lply1binomsc 22331 evls1sca 22343 evl1scvarpw 22383 evl1gsummon 22385 evls1fpws 22389 evls1vsca 22393 asclply1subcl 22394 evls1maplmhm 22397 cpmatacl 22738 cpmatinvcl 22739 mat2pmatbas 22748 mat2pmatghm 22752 mat2pmatmul 22753 decpmatid 22792 pmatcollpwscmatlem1 22811 pm2mpcl 22819 idpm2idmp 22823 mply1topmatcllem 22825 mply1topmatcl 22827 mp2pm2mplem4 22831 mp2pm2mplem5 22832 pm2mpghmlem2 22834 pm2mpghm 22838 pm2mpmhmlem1 22840 pm2mpmhmlem2 22841 monmat2matmon 22846 chpscmat 22864 chpscmatgsumbin 22866 chpscmatgsummon 22867 deg1invg 26160 deg1pwle 26174 deg1pw 26175 ply1remlem 26219 plypf1 26266 ply1lvec 33565 ressasclcl 33576 coe1mon 33590 deg1vr 33594 ply1degltlss 33597 gsummoncoe1fzo 33598 q1pvsca 33604 r1pvsca 33605 r1p0 33606 r1plmhm 33610 irngnzply1lem 33705 2sqr3minply 33753 aks5lem2 42169 ply1vr1smo 48228 ply1mulgsumlem4 48235 ply1mulgsum 48236 |
Copyright terms: Public domain | W3C validator |