| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1lmod | Structured version Visualization version GIF version | ||
| Description: Univariate polynomials form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1lmod.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| Ref | Expression |
|---|---|
| ply1lmod | ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 2 | 1 | psr1lmod 22140 | . 2 ⊢ (𝑅 ∈ Ring → (PwSer1‘𝑅) ∈ LMod) |
| 3 | eqid 2730 | . . . 4 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
| 4 | eqid 2730 | . . . 4 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
| 5 | 3, 4 | ply1bas 22086 | . . 3 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(1o mPoly 𝑅)) |
| 6 | 3, 1, 4 | ply1lss 22088 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(Poly1‘𝑅)) ∈ (LSubSp‘(PwSer1‘𝑅))) |
| 7 | 5, 6 | eqeltrrid 2834 | . 2 ⊢ (𝑅 ∈ Ring → (Base‘(1o mPoly 𝑅)) ∈ (LSubSp‘(PwSer1‘𝑅))) |
| 8 | ply1lmod.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 9 | 8, 1 | ply1val 22085 | . . 3 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
| 10 | eqid 2730 | . . 3 ⊢ (LSubSp‘(PwSer1‘𝑅)) = (LSubSp‘(PwSer1‘𝑅)) | |
| 11 | 9, 10 | lsslmod 20873 | . 2 ⊢ (((PwSer1‘𝑅) ∈ LMod ∧ (Base‘(1o mPoly 𝑅)) ∈ (LSubSp‘(PwSer1‘𝑅))) → 𝑃 ∈ LMod) |
| 12 | 2, 7, 11 | syl2anc 584 | 1 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 1oc1o 8430 Basecbs 17186 Ringcrg 20149 LModclmod 20773 LSubSpclss 20844 mPoly cmpl 21822 PwSer1cps1 22066 Poly1cpl1 22068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-lmod 20775 df-lss 20845 df-psr 21825 df-mpl 21827 df-opsr 21829 df-psr1 22071 df-ply1 22073 |
| This theorem is referenced by: ply1ascl0 22146 ply1ascl1 22147 ply10s0 22149 ply1tmcl 22165 coe1pwmul 22172 ply1sclf 22178 ply1scl0 22183 ply1scl0OLD 22184 ply1scl1 22186 ply1scl1OLD 22187 ply1idvr1OLD 22189 ply1coefsupp 22191 ply1coe 22192 cply1coe0bi 22196 gsumsmonply1 22201 gsummoncoe1 22202 lply1binomsc 22205 evls1sca 22217 evl1scvarpw 22257 evl1gsummon 22259 evls1fpws 22263 evls1vsca 22267 asclply1subcl 22268 evls1maplmhm 22271 cpmatacl 22610 cpmatinvcl 22611 mat2pmatbas 22620 mat2pmatghm 22624 mat2pmatmul 22625 decpmatid 22664 pmatcollpwscmatlem1 22683 pm2mpcl 22691 idpm2idmp 22695 mply1topmatcllem 22697 mply1topmatcl 22699 mp2pm2mplem4 22703 mp2pm2mplem5 22704 pm2mpghmlem2 22706 pm2mpghm 22710 pm2mpmhmlem1 22712 pm2mpmhmlem2 22713 monmat2matmon 22718 chpscmat 22736 chpscmatgsumbin 22738 chpscmatgsummon 22739 deg1invg 26018 deg1pwle 26032 deg1pw 26033 ply1remlem 26077 plypf1 26124 ply1lvec 33535 ressasclcl 33547 coe1mon 33561 deg1vr 33565 ply1degltlss 33569 gsummoncoe1fzo 33570 q1pvsca 33576 r1pvsca 33577 r1p0 33578 r1plmhm 33582 irngnzply1lem 33692 2sqr3minply 33777 cos9thpiminplylem6 33784 cos9thpiminply 33785 aks5lem2 42182 ply1vr1smo 48375 ply1mulgsumlem4 48382 ply1mulgsum 48383 |
| Copyright terms: Public domain | W3C validator |