Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1lmod | Structured version Visualization version GIF version |
Description: Univariate polynomials form a left module. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
ply1lmod.p | ⊢ 𝑃 = (Poly1‘𝑅) |
Ref | Expression |
---|---|
ply1lmod | ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
2 | 1 | psr1lmod 21037 | . 2 ⊢ (𝑅 ∈ Ring → (PwSer1‘𝑅) ∈ LMod) |
3 | eqid 2739 | . . . 4 ⊢ (Poly1‘𝑅) = (Poly1‘𝑅) | |
4 | eqid 2739 | . . . 4 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(Poly1‘𝑅)) | |
5 | 3, 1, 4 | ply1bas 20983 | . . 3 ⊢ (Base‘(Poly1‘𝑅)) = (Base‘(1o mPoly 𝑅)) |
6 | 3, 1, 4 | ply1lss 20984 | . . 3 ⊢ (𝑅 ∈ Ring → (Base‘(Poly1‘𝑅)) ∈ (LSubSp‘(PwSer1‘𝑅))) |
7 | 5, 6 | eqeltrrid 2839 | . 2 ⊢ (𝑅 ∈ Ring → (Base‘(1o mPoly 𝑅)) ∈ (LSubSp‘(PwSer1‘𝑅))) |
8 | ply1lmod.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
9 | 8, 1 | ply1val 20982 | . . 3 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
10 | eqid 2739 | . . 3 ⊢ (LSubSp‘(PwSer1‘𝑅)) = (LSubSp‘(PwSer1‘𝑅)) | |
11 | 9, 10 | lsslmod 19864 | . 2 ⊢ (((PwSer1‘𝑅) ∈ LMod ∧ (Base‘(1o mPoly 𝑅)) ∈ (LSubSp‘(PwSer1‘𝑅))) → 𝑃 ∈ LMod) |
12 | 2, 7, 11 | syl2anc 587 | 1 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ‘cfv 6350 (class class class)co 7183 1oc1o 8137 Basecbs 16599 Ringcrg 19429 LModclmod 19766 LSubSpclss 19835 mPoly cmpl 20732 PwSer1cps1 20963 Poly1cpl1 20965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7492 ax-cnex 10684 ax-resscn 10685 ax-1cn 10686 ax-icn 10687 ax-addcl 10688 ax-addrcl 10689 ax-mulcl 10690 ax-mulrcl 10691 ax-mulcom 10692 ax-addass 10693 ax-mulass 10694 ax-distr 10695 ax-i2m1 10696 ax-1ne0 10697 ax-1rid 10698 ax-rnegex 10699 ax-rrecex 10700 ax-cnre 10701 ax-pre-lttri 10702 ax-pre-lttrn 10703 ax-pre-ltadd 10704 ax-pre-mulgt0 10705 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-iun 4893 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6186 df-on 6187 df-lim 6188 df-suc 6189 df-iota 6308 df-fun 6352 df-fn 6353 df-f 6354 df-f1 6355 df-fo 6356 df-f1o 6357 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-of 7438 df-om 7613 df-1st 7727 df-2nd 7728 df-supp 7870 df-wrecs 7989 df-recs 8050 df-rdg 8088 df-1o 8144 df-er 8333 df-map 8452 df-en 8569 df-dom 8570 df-sdom 8571 df-fin 8572 df-fsupp 8920 df-pnf 10768 df-mnf 10769 df-xr 10770 df-ltxr 10771 df-le 10772 df-sub 10963 df-neg 10964 df-nn 11730 df-2 11792 df-3 11793 df-4 11794 df-5 11795 df-6 11796 df-7 11797 df-8 11798 df-9 11799 df-n0 11990 df-z 12076 df-dec 12193 df-uz 12338 df-fz 12995 df-struct 16601 df-ndx 16602 df-slot 16603 df-base 16605 df-sets 16606 df-ress 16607 df-plusg 16694 df-mulr 16695 df-sca 16697 df-vsca 16698 df-tset 16700 df-ple 16701 df-0g 16831 df-mgm 17981 df-sgrp 18030 df-mnd 18041 df-grp 18235 df-minusg 18236 df-sbg 18237 df-subg 18407 df-mgp 19372 df-ur 19384 df-ring 19431 df-lmod 19768 df-lss 19836 df-psr 20735 df-mpl 20737 df-opsr 20739 df-psr1 20968 df-ply1 20970 |
This theorem is referenced by: ply10s0 21044 ply1tmcl 21060 coe1pwmul 21067 ply1sclf 21073 ply1scl0 21078 ply1scl1 21080 ply1idvr1 21081 ply1coefsupp 21083 ply1coe 21084 cply1coe0bi 21088 gsumsmonply1 21091 gsummoncoe1 21092 lply1binomsc 21095 evls1sca 21106 evl1scvarpw 21146 evl1gsummon 21148 cpmatacl 21480 cpmatinvcl 21481 mat2pmatbas 21490 mat2pmatghm 21494 mat2pmatmul 21495 decpmatid 21534 pmatcollpwscmatlem1 21553 pm2mpcl 21561 idpm2idmp 21565 mply1topmatcllem 21567 mply1topmatcl 21569 mp2pm2mplem4 21573 mp2pm2mplem5 21574 pm2mpghmlem2 21576 pm2mpghm 21580 pm2mpmhmlem1 21582 pm2mpmhmlem2 21583 monmat2matmon 21588 chpscmat 21606 chpscmatgsumbin 21608 chpscmatgsummon 21609 deg1invg 24872 deg1pwle 24885 deg1pw 24886 ply1remlem 24928 plypf1 24974 ply1vr1smo 45304 ply1mulgsumlem4 45312 ply1mulgsum 45313 |
Copyright terms: Public domain | W3C validator |