| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1vsca | Structured version Visualization version GIF version | ||
| Description: Value of scalar multiplication in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
| Ref | Expression |
|---|---|
| ply1plusg.y | ⊢ 𝑌 = (Poly1‘𝑅) |
| ply1plusg.s | ⊢ 𝑆 = (1o mPoly 𝑅) |
| ply1vscafval.n | ⊢ · = ( ·𝑠 ‘𝑌) |
| Ref | Expression |
|---|---|
| ply1vsca | ⊢ · = ( ·𝑠 ‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1vscafval.n | . 2 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 2 | ply1plusg.s | . . . 4 ⊢ 𝑆 = (1o mPoly 𝑅) | |
| 3 | eqid 2731 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
| 4 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 5 | 2, 3, 4 | mplvsca2 21946 | . . 3 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
| 6 | eqid 2731 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 7 | eqid 2731 | . . . 4 ⊢ ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘(PwSer1‘𝑅)) | |
| 8 | 6, 3, 7 | psr1vsca 22129 | . . 3 ⊢ ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
| 9 | fvex 6830 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) ∈ V | |
| 10 | ply1plusg.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
| 11 | 10, 6 | ply1val 22101 | . . . . 5 ⊢ 𝑌 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
| 12 | 11, 7 | ressvsca 17243 | . . . 4 ⊢ ((Base‘(1o mPoly 𝑅)) ∈ V → ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘𝑌)) |
| 13 | 9, 12 | ax-mp 5 | . . 3 ⊢ ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘𝑌) |
| 14 | 5, 8, 13 | 3eqtr2i 2760 | . 2 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑌) |
| 15 | 1, 14 | eqtr4i 2757 | 1 ⊢ · = ( ·𝑠 ‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ‘cfv 6476 (class class class)co 7341 1oc1o 8373 Basecbs 17115 ·𝑠 cvsca 17160 mPwSer cmps 21836 mPoly cmpl 21838 PwSer1cps1 22082 Poly1cpl1 22084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-dec 12584 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-vsca 17173 df-ple 17176 df-psr 21841 df-mpl 21843 df-opsr 21845 df-psr1 22087 df-ply1 22089 |
| This theorem is referenced by: ply1ass23l 22134 ressply1vsca 22139 ply1ascl 22167 coe1tm 22182 ply1coe 22208 ply1vscl 22294 rhmply1vsca 22298 deg1vscale 26031 deg1vsca 26032 |
| Copyright terms: Public domain | W3C validator |