![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1vsca | Structured version Visualization version GIF version |
Description: Value of scalar multiplication in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
ply1plusg.y | ⊢ 𝑌 = (Poly1‘𝑅) |
ply1plusg.s | ⊢ 𝑆 = (1o mPoly 𝑅) |
ply1vscafval.n | ⊢ · = ( ·𝑠 ‘𝑌) |
Ref | Expression |
---|---|
ply1vsca | ⊢ · = ( ·𝑠 ‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1vscafval.n | . 2 ⊢ · = ( ·𝑠 ‘𝑌) | |
2 | ply1plusg.s | . . . 4 ⊢ 𝑆 = (1o mPoly 𝑅) | |
3 | eqid 2740 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
4 | eqid 2740 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
5 | 2, 3, 4 | mplvsca2 22057 | . . 3 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
6 | eqid 2740 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
7 | eqid 2740 | . . . 4 ⊢ ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘(PwSer1‘𝑅)) | |
8 | 6, 3, 7 | psr1vsca 22244 | . . 3 ⊢ ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
9 | fvex 6933 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) ∈ V | |
10 | ply1plusg.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
11 | 10, 6 | ply1val 22216 | . . . . 5 ⊢ 𝑌 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
12 | 11, 7 | ressvsca 17403 | . . . 4 ⊢ ((Base‘(1o mPoly 𝑅)) ∈ V → ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘𝑌)) |
13 | 9, 12 | ax-mp 5 | . . 3 ⊢ ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘𝑌) |
14 | 5, 8, 13 | 3eqtr2i 2774 | . 2 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑌) |
15 | 1, 14 | eqtr4i 2771 | 1 ⊢ · = ( ·𝑠 ‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ‘cfv 6573 (class class class)co 7448 1oc1o 8515 Basecbs 17258 ·𝑠 cvsca 17315 mPwSer cmps 21947 mPoly cmpl 21949 PwSer1cps1 22197 Poly1cpl1 22199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-dec 12759 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-vsca 17328 df-ple 17331 df-psr 21952 df-mpl 21954 df-opsr 21956 df-psr1 22202 df-ply1 22204 |
This theorem is referenced by: ply1ass23l 22249 ressply1vsca 22254 ply1ascl 22282 coe1tm 22297 ply1coe 22323 ply1vscl 22409 rhmply1vsca 22413 deg1vscale 26163 deg1vsca 26164 |
Copyright terms: Public domain | W3C validator |