| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1vsca | Structured version Visualization version GIF version | ||
| Description: Value of scalar multiplication in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
| Ref | Expression |
|---|---|
| ply1plusg.y | ⊢ 𝑌 = (Poly1‘𝑅) |
| ply1plusg.s | ⊢ 𝑆 = (1o mPoly 𝑅) |
| ply1vscafval.n | ⊢ · = ( ·𝑠 ‘𝑌) |
| Ref | Expression |
|---|---|
| ply1vsca | ⊢ · = ( ·𝑠 ‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1vscafval.n | . 2 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 2 | ply1plusg.s | . . . 4 ⊢ 𝑆 = (1o mPoly 𝑅) | |
| 3 | eqid 2729 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
| 4 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 5 | 2, 3, 4 | mplvsca2 21899 | . . 3 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
| 6 | eqid 2729 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 7 | eqid 2729 | . . . 4 ⊢ ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘(PwSer1‘𝑅)) | |
| 8 | 6, 3, 7 | psr1vsca 22082 | . . 3 ⊢ ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
| 9 | fvex 6853 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) ∈ V | |
| 10 | ply1plusg.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
| 11 | 10, 6 | ply1val 22054 | . . . . 5 ⊢ 𝑌 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
| 12 | 11, 7 | ressvsca 17283 | . . . 4 ⊢ ((Base‘(1o mPoly 𝑅)) ∈ V → ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘𝑌)) |
| 13 | 9, 12 | ax-mp 5 | . . 3 ⊢ ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘𝑌) |
| 14 | 5, 8, 13 | 3eqtr2i 2758 | . 2 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑌) |
| 15 | 1, 14 | eqtr4i 2755 | 1 ⊢ · = ( ·𝑠 ‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3444 ‘cfv 6499 (class class class)co 7369 1oc1o 8404 Basecbs 17155 ·𝑠 cvsca 17200 mPwSer cmps 21789 mPoly cmpl 21791 PwSer1cps1 22035 Poly1cpl1 22037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-vsca 17213 df-ple 17216 df-psr 21794 df-mpl 21796 df-opsr 21798 df-psr1 22040 df-ply1 22042 |
| This theorem is referenced by: ply1ass23l 22087 ressply1vsca 22092 ply1ascl 22120 coe1tm 22135 ply1coe 22161 ply1vscl 22247 rhmply1vsca 22251 deg1vscale 25985 deg1vsca 25986 |
| Copyright terms: Public domain | W3C validator |