| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1vsca | Structured version Visualization version GIF version | ||
| Description: Value of scalar multiplication in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
| Ref | Expression |
|---|---|
| ply1plusg.y | ⊢ 𝑌 = (Poly1‘𝑅) |
| ply1plusg.s | ⊢ 𝑆 = (1o mPoly 𝑅) |
| ply1vscafval.n | ⊢ · = ( ·𝑠 ‘𝑌) |
| Ref | Expression |
|---|---|
| ply1vsca | ⊢ · = ( ·𝑠 ‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1vscafval.n | . 2 ⊢ · = ( ·𝑠 ‘𝑌) | |
| 2 | ply1plusg.s | . . . 4 ⊢ 𝑆 = (1o mPoly 𝑅) | |
| 3 | eqid 2737 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
| 4 | eqid 2737 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 5 | 2, 3, 4 | mplvsca2 22034 | . . 3 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
| 6 | eqid 2737 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 7 | eqid 2737 | . . . 4 ⊢ ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘(PwSer1‘𝑅)) | |
| 8 | 6, 3, 7 | psr1vsca 22223 | . . 3 ⊢ ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘(1o mPwSer 𝑅)) |
| 9 | fvex 6919 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) ∈ V | |
| 10 | ply1plusg.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
| 11 | 10, 6 | ply1val 22195 | . . . . 5 ⊢ 𝑌 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
| 12 | 11, 7 | ressvsca 17388 | . . . 4 ⊢ ((Base‘(1o mPoly 𝑅)) ∈ V → ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘𝑌)) |
| 13 | 9, 12 | ax-mp 5 | . . 3 ⊢ ( ·𝑠 ‘(PwSer1‘𝑅)) = ( ·𝑠 ‘𝑌) |
| 14 | 5, 8, 13 | 3eqtr2i 2771 | . 2 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑌) |
| 15 | 1, 14 | eqtr4i 2768 | 1 ⊢ · = ( ·𝑠 ‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3480 ‘cfv 6561 (class class class)co 7431 1oc1o 8499 Basecbs 17247 ·𝑠 cvsca 17301 mPwSer cmps 21924 mPoly cmpl 21926 PwSer1cps1 22176 Poly1cpl1 22178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-dec 12734 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-vsca 17314 df-ple 17317 df-psr 21929 df-mpl 21931 df-opsr 21933 df-psr1 22181 df-ply1 22183 |
| This theorem is referenced by: ply1ass23l 22228 ressply1vsca 22233 ply1ascl 22261 coe1tm 22276 ply1coe 22302 ply1vscl 22388 rhmply1vsca 22392 deg1vscale 26143 deg1vsca 26144 |
| Copyright terms: Public domain | W3C validator |