![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1plusg | Structured version Visualization version GIF version |
Description: Value of addition in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
ply1plusg.y | ⊢ 𝑌 = (Poly1‘𝑅) |
ply1plusg.s | ⊢ 𝑆 = (1o mPoly 𝑅) |
ply1plusg.p | ⊢ + = (+g‘𝑌) |
Ref | Expression |
---|---|
ply1plusg | ⊢ + = (+g‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1plusg.p | . 2 ⊢ + = (+g‘𝑌) | |
2 | ply1plusg.s | . . . 4 ⊢ 𝑆 = (1o mPoly 𝑅) | |
3 | eqid 2735 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
4 | eqid 2735 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
5 | 2, 3, 4 | mplplusg 22045 | . . 3 ⊢ (+g‘𝑆) = (+g‘(1o mPwSer 𝑅)) |
6 | eqid 2735 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
7 | eqid 2735 | . . . 4 ⊢ (+g‘(PwSer1‘𝑅)) = (+g‘(PwSer1‘𝑅)) | |
8 | 6, 3, 7 | psr1plusg 22238 | . . 3 ⊢ (+g‘(PwSer1‘𝑅)) = (+g‘(1o mPwSer 𝑅)) |
9 | fvex 6920 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) ∈ V | |
10 | ply1plusg.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
11 | 10, 6 | ply1val 22211 | . . . . 5 ⊢ 𝑌 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
12 | 11, 7 | ressplusg 17336 | . . . 4 ⊢ ((Base‘(1o mPoly 𝑅)) ∈ V → (+g‘(PwSer1‘𝑅)) = (+g‘𝑌)) |
13 | 9, 12 | ax-mp 5 | . . 3 ⊢ (+g‘(PwSer1‘𝑅)) = (+g‘𝑌) |
14 | 5, 8, 13 | 3eqtr2i 2769 | . 2 ⊢ (+g‘𝑆) = (+g‘𝑌) |
15 | 1, 14 | eqtr4i 2766 | 1 ⊢ + = (+g‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 Vcvv 3478 ‘cfv 6563 (class class class)co 7431 1oc1o 8498 Basecbs 17245 +gcplusg 17298 mPwSer cmps 21942 mPoly cmpl 21944 PwSer1cps1 22192 Poly1cpl1 22194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-dec 12732 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-ple 17318 df-psr 21947 df-mpl 21949 df-opsr 21951 df-psr1 22197 df-ply1 22199 |
This theorem is referenced by: ressply1add 22247 subrgply1 22250 ply1plusgfvi 22259 ply1plusgpropd 22261 ply1mpl0 22274 coe1add 22283 ply1coe 22318 evls1rhm 22342 evl1rhm 22352 rhmply1 22406 deg1addle 26155 |
Copyright terms: Public domain | W3C validator |