MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ply1plusg Structured version   Visualization version   GIF version

Theorem ply1plusg 22106
Description: Value of addition in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
ply1plusg.y 𝑌 = (Poly1𝑅)
ply1plusg.s 𝑆 = (1o mPoly 𝑅)
ply1plusg.p + = (+g𝑌)
Assertion
Ref Expression
ply1plusg + = (+g𝑆)

Proof of Theorem ply1plusg
StepHypRef Expression
1 ply1plusg.p . 2 + = (+g𝑌)
2 ply1plusg.s . . . 4 𝑆 = (1o mPoly 𝑅)
3 eqid 2729 . . . 4 (1o mPwSer 𝑅) = (1o mPwSer 𝑅)
4 eqid 2729 . . . 4 (+g𝑆) = (+g𝑆)
52, 3, 4mplplusg 21914 . . 3 (+g𝑆) = (+g‘(1o mPwSer 𝑅))
6 eqid 2729 . . . 4 (PwSer1𝑅) = (PwSer1𝑅)
7 eqid 2729 . . . 4 (+g‘(PwSer1𝑅)) = (+g‘(PwSer1𝑅))
86, 3, 7psr1plusg 22103 . . 3 (+g‘(PwSer1𝑅)) = (+g‘(1o mPwSer 𝑅))
9 fvex 6835 . . . 4 (Base‘(1o mPoly 𝑅)) ∈ V
10 ply1plusg.y . . . . . 6 𝑌 = (Poly1𝑅)
1110, 6ply1val 22076 . . . . 5 𝑌 = ((PwSer1𝑅) ↾s (Base‘(1o mPoly 𝑅)))
1211, 7ressplusg 17195 . . . 4 ((Base‘(1o mPoly 𝑅)) ∈ V → (+g‘(PwSer1𝑅)) = (+g𝑌))
139, 12ax-mp 5 . . 3 (+g‘(PwSer1𝑅)) = (+g𝑌)
145, 8, 133eqtr2i 2758 . 2 (+g𝑆) = (+g𝑌)
151, 14eqtr4i 2755 1 + = (+g𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3436  cfv 6482  (class class class)co 7349  1oc1o 8381  Basecbs 17120  +gcplusg 17161   mPwSer cmps 21811   mPoly cmpl 21813  PwSer1cps1 22057  Poly1cpl1 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-dec 12592  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-ple 17181  df-psr 21816  df-mpl 21818  df-opsr 21820  df-psr1 22062  df-ply1 22064
This theorem is referenced by:  ressply1add  22112  subrgply1  22115  ply1plusgfvi  22124  ply1plusgpropd  22126  ply1mpl0  22139  coe1add  22148  ply1coe  22183  evls1rhm  22207  evl1rhm  22217  rhmply1  22271  deg1addle  26004
  Copyright terms: Public domain W3C validator