![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1plusg | Structured version Visualization version GIF version |
Description: Value of addition in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
ply1plusg.y | ⊢ 𝑌 = (Poly1‘𝑅) |
ply1plusg.s | ⊢ 𝑆 = (1o mPoly 𝑅) |
ply1plusg.p | ⊢ + = (+g‘𝑌) |
Ref | Expression |
---|---|
ply1plusg | ⊢ + = (+g‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1plusg.p | . 2 ⊢ + = (+g‘𝑌) | |
2 | ply1plusg.s | . . . 4 ⊢ 𝑆 = (1o mPoly 𝑅) | |
3 | eqid 2733 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
4 | eqid 2733 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
5 | 2, 3, 4 | mplplusg 21558 | . . 3 ⊢ (+g‘𝑆) = (+g‘(1o mPwSer 𝑅)) |
6 | eqid 2733 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
7 | eqid 2733 | . . . 4 ⊢ (+g‘(PwSer1‘𝑅)) = (+g‘(PwSer1‘𝑅)) | |
8 | 6, 3, 7 | psr1plusg 21736 | . . 3 ⊢ (+g‘(PwSer1‘𝑅)) = (+g‘(1o mPwSer 𝑅)) |
9 | fvex 6902 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) ∈ V | |
10 | ply1plusg.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
11 | 10, 6 | ply1val 21710 | . . . . 5 ⊢ 𝑌 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
12 | 11, 7 | ressplusg 17232 | . . . 4 ⊢ ((Base‘(1o mPoly 𝑅)) ∈ V → (+g‘(PwSer1‘𝑅)) = (+g‘𝑌)) |
13 | 9, 12 | ax-mp 5 | . . 3 ⊢ (+g‘(PwSer1‘𝑅)) = (+g‘𝑌) |
14 | 5, 8, 13 | 3eqtr2i 2767 | . 2 ⊢ (+g‘𝑆) = (+g‘𝑌) |
15 | 1, 14 | eqtr4i 2764 | 1 ⊢ + = (+g‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 Vcvv 3475 ‘cfv 6541 (class class class)co 7406 1oc1o 8456 Basecbs 17141 +gcplusg 17194 mPwSer cmps 21449 mPoly cmpl 21451 PwSer1cps1 21691 Poly1cpl1 21693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-dec 12675 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17142 df-ress 17171 df-plusg 17207 df-ple 17214 df-psr 21454 df-mpl 21456 df-opsr 21458 df-psr1 21696 df-ply1 21698 |
This theorem is referenced by: ressply1add 21744 subrgply1 21747 ply1plusgfvi 21756 ply1plusgpropd 21758 ply1mpl0 21769 coe1add 21778 ply1coe 21812 evls1rhm 21833 evl1rhm 21843 deg1addle 25611 |
Copyright terms: Public domain | W3C validator |