Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ply1plusg | Structured version Visualization version GIF version |
Description: Value of addition in a univariate polynomial ring. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
ply1plusg.y | ⊢ 𝑌 = (Poly1‘𝑅) |
ply1plusg.s | ⊢ 𝑆 = (1o mPoly 𝑅) |
ply1plusg.p | ⊢ + = (+g‘𝑌) |
Ref | Expression |
---|---|
ply1plusg | ⊢ + = (+g‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1plusg.p | . 2 ⊢ + = (+g‘𝑌) | |
2 | ply1plusg.s | . . . 4 ⊢ 𝑆 = (1o mPoly 𝑅) | |
3 | eqid 2759 | . . . 4 ⊢ (1o mPwSer 𝑅) = (1o mPwSer 𝑅) | |
4 | eqid 2759 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
5 | 2, 3, 4 | mplplusg 20929 | . . 3 ⊢ (+g‘𝑆) = (+g‘(1o mPwSer 𝑅)) |
6 | eqid 2759 | . . . 4 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
7 | eqid 2759 | . . . 4 ⊢ (+g‘(PwSer1‘𝑅)) = (+g‘(PwSer1‘𝑅)) | |
8 | 6, 3, 7 | psr1plusg 20931 | . . 3 ⊢ (+g‘(PwSer1‘𝑅)) = (+g‘(1o mPwSer 𝑅)) |
9 | fvex 6664 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) ∈ V | |
10 | ply1plusg.y | . . . . . 6 ⊢ 𝑌 = (Poly1‘𝑅) | |
11 | 10, 6 | ply1val 20903 | . . . . 5 ⊢ 𝑌 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
12 | 11, 7 | ressplusg 16655 | . . . 4 ⊢ ((Base‘(1o mPoly 𝑅)) ∈ V → (+g‘(PwSer1‘𝑅)) = (+g‘𝑌)) |
13 | 9, 12 | ax-mp 5 | . . 3 ⊢ (+g‘(PwSer1‘𝑅)) = (+g‘𝑌) |
14 | 5, 8, 13 | 3eqtr2i 2788 | . 2 ⊢ (+g‘𝑆) = (+g‘𝑌) |
15 | 1, 14 | eqtr4i 2785 | 1 ⊢ + = (+g‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 Vcvv 3407 ‘cfv 6328 (class class class)co 7143 1oc1o 8098 Basecbs 16526 +gcplusg 16608 mPwSer cmps 20651 mPoly cmpl 20653 PwSer1cps1 20884 Poly1cpl1 20886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-om 7573 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-er 8292 df-en 8521 df-dom 8522 df-sdom 8523 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-nn 11660 df-2 11722 df-3 11723 df-4 11724 df-5 11725 df-6 11726 df-7 11727 df-8 11728 df-9 11729 df-dec 12123 df-ndx 16529 df-slot 16530 df-base 16532 df-sets 16533 df-ress 16534 df-plusg 16621 df-ple 16628 df-psr 20656 df-mpl 20658 df-opsr 20660 df-psr1 20889 df-ply1 20891 |
This theorem is referenced by: ressply1add 20939 subrgply1 20942 ply1plusgfvi 20951 ply1plusgpropd 20953 ply1mpl0 20964 coe1add 20973 ply1coe 21005 evls1rhm 21026 evl1rhm 21036 deg1addle 24786 |
Copyright terms: Public domain | W3C validator |