![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1sca | Structured version Visualization version GIF version |
Description: Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
ply1lmod.p | ⊢ 𝑃 = (Poly1‘𝑅) |
Ref | Expression |
---|---|
ply1sca | ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
2 | 1 | psr1sca 22266 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘(PwSer1‘𝑅))) |
3 | fvex 6919 | . . 3 ⊢ (Base‘(1o mPoly 𝑅)) ∈ V | |
4 | ply1lmod.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | 4, 1 | ply1val 22210 | . . . 4 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
6 | eqid 2734 | . . . 4 ⊢ (Scalar‘(PwSer1‘𝑅)) = (Scalar‘(PwSer1‘𝑅)) | |
7 | 5, 6 | resssca 17388 | . . 3 ⊢ ((Base‘(1o mPoly 𝑅)) ∈ V → (Scalar‘(PwSer1‘𝑅)) = (Scalar‘𝑃)) |
8 | 3, 7 | ax-mp 5 | . 2 ⊢ (Scalar‘(PwSer1‘𝑅)) = (Scalar‘𝑃) |
9 | 2, 8 | eqtrdi 2790 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ‘cfv 6562 (class class class)co 7430 1oc1o 8497 Basecbs 17244 Scalarcsca 17300 mPoly cmpl 21943 PwSer1cps1 22191 Poly1cpl1 22193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-tset 17316 df-ple 17317 df-psr 21946 df-opsr 21950 df-psr1 22196 df-ply1 22198 |
This theorem is referenced by: ply1sca2 22270 ply1ascl0 22271 ply1ascl1 22272 ply10s0 22274 ply1ascl 22276 coe1pwmul 22297 ply1scl0 22308 ply1scl1 22311 ply1idvr1OLD 22314 ply1coefsupp 22316 ply1coe 22317 cply1coe0bi 22321 ply1chr 22325 gsumsmonply1 22326 gsummoncoe1 22327 lply1binomsc 22330 ply1fermltlchr 22331 evls1sca 22342 evl1vsd 22363 evl1scvarpw 22382 evl1gsummon 22384 evls1fpws 22388 evls1vsca 22392 asclply1subcl 22393 evls1maplmhm 22396 cpmatacl 22737 cpmatinvcl 22738 mat2pmatbas 22747 mat2pmatghm 22751 mat2pmatmul 22752 mat2pmatlin 22756 decpmatid 22791 pmatcollpw2lem 22798 monmatcollpw 22800 pmatcollpwlem 22801 pmatcollpwscmatlem1 22810 pm2mpcl 22818 idpm2idmp 22822 mply1topmatcllem 22824 mply1topmatcl 22826 mp2pm2mplem4 22830 mp2pm2mplem5 22831 pm2mpghmlem2 22833 pm2mpghm 22837 pm2mpmhmlem1 22839 pm2mpmhmlem2 22840 monmat2matmon 22845 chpscmat 22863 chpscmatgsumbin 22865 chpscmatgsummon 22866 deg1pwle 26173 deg1pw 26174 ply1remlem 26218 fta1blem 26224 plypf1 26265 ply1lvec 33564 ressasclcl 33575 ply1asclunit 33578 coe1mon 33589 deg1vr 33593 ply1degltlss 33596 gsummoncoe1fzo 33597 q1pvsca 33603 r1pvsca 33604 r1p0 33605 r1plmhm 33609 ply1degltdimlem 33649 irngnzply1lem 33704 algextdeglem8 33729 2sqr3minply 33752 aks5lem2 42168 ply1asclzrhval 42169 ply1vr1smo 48227 ply1sclrmsm 48228 ply1mulgsumlem4 48234 ply1mulgsum 48235 |
Copyright terms: Public domain | W3C validator |