| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1sca | Structured version Visualization version GIF version | ||
| Description: Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1lmod.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| Ref | Expression |
|---|---|
| ply1sca | ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 2 | 1 | psr1sca 22169 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘(PwSer1‘𝑅))) |
| 3 | fvex 6854 | . . 3 ⊢ (Base‘(1o mPoly 𝑅)) ∈ V | |
| 4 | ply1lmod.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | 4, 1 | ply1val 22113 | . . . 4 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
| 6 | eqid 2729 | . . . 4 ⊢ (Scalar‘(PwSer1‘𝑅)) = (Scalar‘(PwSer1‘𝑅)) | |
| 7 | 5, 6 | resssca 17284 | . . 3 ⊢ ((Base‘(1o mPoly 𝑅)) ∈ V → (Scalar‘(PwSer1‘𝑅)) = (Scalar‘𝑃)) |
| 8 | 3, 7 | ax-mp 5 | . 2 ⊢ (Scalar‘(PwSer1‘𝑅)) = (Scalar‘𝑃) |
| 9 | 2, 8 | eqtrdi 2780 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ‘cfv 6500 (class class class)co 7370 1oc1o 8405 Basecbs 17157 Scalarcsca 17201 mPoly cmpl 21850 PwSer1cps1 22094 Poly1cpl1 22096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-of 7634 df-om 7824 df-1st 7948 df-2nd 7949 df-supp 8118 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-map 8779 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-fsupp 9290 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-fz 13448 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-tset 17217 df-ple 17218 df-psr 21853 df-opsr 21857 df-psr1 22099 df-ply1 22101 |
| This theorem is referenced by: ply1sca2 22173 ply1ascl0 22174 ply1ascl1 22175 ply10s0 22177 ply1ascl 22179 coe1pwmul 22200 ply1scl0 22211 ply1scl1 22214 ply1idvr1OLD 22217 ply1coefsupp 22219 ply1coe 22220 cply1coe0bi 22224 ply1chr 22228 gsumsmonply1 22229 gsummoncoe1 22230 lply1binomsc 22233 ply1fermltlchr 22234 evls1sca 22245 evl1vsd 22266 evl1scvarpw 22285 evl1gsummon 22287 evls1fpws 22291 evls1vsca 22295 asclply1subcl 22296 evls1maplmhm 22299 cpmatacl 22638 cpmatinvcl 22639 mat2pmatbas 22648 mat2pmatghm 22652 mat2pmatmul 22653 mat2pmatlin 22657 decpmatid 22692 pmatcollpw2lem 22699 monmatcollpw 22701 pmatcollpwlem 22702 pmatcollpwscmatlem1 22711 pm2mpcl 22719 idpm2idmp 22723 mply1topmatcllem 22725 mply1topmatcl 22727 mp2pm2mplem4 22731 mp2pm2mplem5 22732 pm2mpghmlem2 22734 pm2mpghm 22738 pm2mpmhmlem1 22740 pm2mpmhmlem2 22741 monmat2matmon 22746 chpscmat 22764 chpscmatgsumbin 22766 chpscmatgsummon 22767 deg1pwle 26060 deg1pw 26061 ply1remlem 26105 fta1blem 26111 plypf1 26152 ply1lvec 33523 ressasclcl 33535 ply1asclunit 33538 coe1mon 33549 deg1vr 33553 ply1degltlss 33557 gsummoncoe1fzo 33558 q1pvsca 33564 r1pvsca 33565 r1p0 33566 r1plmhm 33570 ply1degltdimlem 33613 irngnzply1lem 33680 algextdeglem8 33709 2sqr3minply 33765 cos9thpiminplylem6 33772 cos9thpiminply 33773 aks5lem2 42170 ply1asclzrhval 42171 ply1vr1smo 48366 ply1sclrmsm 48367 ply1mulgsumlem4 48373 ply1mulgsum 48374 |
| Copyright terms: Public domain | W3C validator |