| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1sca | Structured version Visualization version GIF version | ||
| Description: Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
| Ref | Expression |
|---|---|
| ply1lmod.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| Ref | Expression |
|---|---|
| ply1sca | ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
| 2 | 1 | psr1sca 22155 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘(PwSer1‘𝑅))) |
| 3 | fvex 6830 | . . 3 ⊢ (Base‘(1o mPoly 𝑅)) ∈ V | |
| 4 | ply1lmod.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 5 | 4, 1 | ply1val 22099 | . . . 4 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
| 6 | eqid 2730 | . . . 4 ⊢ (Scalar‘(PwSer1‘𝑅)) = (Scalar‘(PwSer1‘𝑅)) | |
| 7 | 5, 6 | resssca 17239 | . . 3 ⊢ ((Base‘(1o mPoly 𝑅)) ∈ V → (Scalar‘(PwSer1‘𝑅)) = (Scalar‘𝑃)) |
| 8 | 3, 7 | ax-mp 5 | . 2 ⊢ (Scalar‘(PwSer1‘𝑅)) = (Scalar‘𝑃) |
| 9 | 2, 8 | eqtrdi 2781 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 Vcvv 3434 ‘cfv 6477 (class class class)co 7341 1oc1o 8373 Basecbs 17112 Scalarcsca 17156 mPoly cmpl 21836 PwSer1cps1 22080 Poly1cpl1 22082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-tset 17172 df-ple 17173 df-psr 21839 df-opsr 21843 df-psr1 22085 df-ply1 22087 |
| This theorem is referenced by: ply1sca2 22159 ply1ascl0 22160 ply1ascl1 22161 ply10s0 22163 ply1ascl 22165 coe1pwmul 22186 ply1scl0 22197 ply1scl1 22200 ply1idvr1OLD 22203 ply1coefsupp 22205 ply1coe 22206 cply1coe0bi 22210 ply1chr 22214 gsumsmonply1 22215 gsummoncoe1 22216 lply1binomsc 22219 ply1fermltlchr 22220 evls1sca 22231 evl1vsd 22252 evl1scvarpw 22271 evl1gsummon 22273 evls1fpws 22277 evls1vsca 22281 asclply1subcl 22282 evls1maplmhm 22285 cpmatacl 22624 cpmatinvcl 22625 mat2pmatbas 22634 mat2pmatghm 22638 mat2pmatmul 22639 mat2pmatlin 22643 decpmatid 22678 pmatcollpw2lem 22685 monmatcollpw 22687 pmatcollpwlem 22688 pmatcollpwscmatlem1 22697 pm2mpcl 22705 idpm2idmp 22709 mply1topmatcllem 22711 mply1topmatcl 22713 mp2pm2mplem4 22717 mp2pm2mplem5 22718 pm2mpghmlem2 22720 pm2mpghm 22724 pm2mpmhmlem1 22726 pm2mpmhmlem2 22727 monmat2matmon 22732 chpscmat 22750 chpscmatgsumbin 22752 chpscmatgsummon 22753 deg1pwle 26045 deg1pw 26046 ply1remlem 26090 fta1blem 26096 plypf1 26137 ply1lvec 33512 ressasclcl 33524 ply1asclunit 33527 coe1mon 33539 deg1vr 33543 ply1degltlss 33547 gsummoncoe1fzo 33548 q1pvsca 33554 r1pvsca 33555 r1p0 33556 r1plmhm 33560 ply1degltdimlem 33625 irngnzply1lem 33693 extdgfialglem2 33696 algextdeglem8 33727 2sqr3minply 33783 cos9thpiminplylem6 33790 cos9thpiminply 33791 aks5lem2 42199 ply1asclzrhval 42200 ply1vr1smo 48393 ply1sclrmsm 48394 ply1mulgsumlem4 48400 ply1mulgsum 48401 |
| Copyright terms: Public domain | W3C validator |