![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1sca | Structured version Visualization version GIF version |
Description: Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015.) |
Ref | Expression |
---|---|
ply1lmod.p | ⊢ 𝑃 = (Poly1‘𝑅) |
Ref | Expression |
---|---|
ply1sca | ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 ⊢ (PwSer1‘𝑅) = (PwSer1‘𝑅) | |
2 | 1 | psr1sca 22155 | . 2 ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘(PwSer1‘𝑅))) |
3 | fvex 6904 | . . 3 ⊢ (Base‘(1o mPoly 𝑅)) ∈ V | |
4 | ply1lmod.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
5 | 4, 1 | ply1val 22100 | . . . 4 ⊢ 𝑃 = ((PwSer1‘𝑅) ↾s (Base‘(1o mPoly 𝑅))) |
6 | eqid 2727 | . . . 4 ⊢ (Scalar‘(PwSer1‘𝑅)) = (Scalar‘(PwSer1‘𝑅)) | |
7 | 5, 6 | resssca 17315 | . . 3 ⊢ ((Base‘(1o mPoly 𝑅)) ∈ V → (Scalar‘(PwSer1‘𝑅)) = (Scalar‘𝑃)) |
8 | 3, 7 | ax-mp 5 | . 2 ⊢ (Scalar‘(PwSer1‘𝑅)) = (Scalar‘𝑃) |
9 | 2, 8 | eqtrdi 2783 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝑅 = (Scalar‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3469 ‘cfv 6542 (class class class)co 7414 1oc1o 8473 Basecbs 17171 Scalarcsca 17227 mPoly cmpl 21826 PwSer1cps1 22081 Poly1cpl1 22083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-z 12581 df-dec 12700 df-uz 12845 df-fz 13509 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-sca 17240 df-vsca 17241 df-tset 17243 df-ple 17244 df-psr 21829 df-opsr 21833 df-psr1 22086 df-ply1 22088 |
This theorem is referenced by: ply1sca2 22159 ply1ascl0 22160 ply10s0 22162 ply1ascl 22164 coe1pwmul 22185 ply1scl0 22196 ply1scl1 22199 ply1idvr1 22201 ply1coefsupp 22203 ply1coe 22204 cply1coe0bi 22208 ply1chr 22212 gsumsmonply1 22213 gsummoncoe1 22214 lply1binomsc 22217 ply1fermltlchr 22218 evls1sca 22229 evl1vsd 22250 evl1scvarpw 22269 evl1gsummon 22271 cpmatacl 22605 cpmatinvcl 22606 mat2pmatbas 22615 mat2pmatghm 22619 mat2pmatmul 22620 mat2pmatlin 22624 decpmatid 22659 pmatcollpw2lem 22666 monmatcollpw 22668 pmatcollpwlem 22669 pmatcollpwscmatlem1 22678 pm2mpcl 22686 idpm2idmp 22690 mply1topmatcllem 22692 mply1topmatcl 22694 mp2pm2mplem4 22698 mp2pm2mplem5 22699 pm2mpghmlem2 22701 pm2mpghm 22705 pm2mpmhmlem1 22707 pm2mpmhmlem2 22708 monmat2matmon 22713 chpscmat 22731 chpscmatgsumbin 22733 chpscmatgsummon 22734 deg1pwle 26042 deg1pw 26043 ply1remlem 26086 fta1blem 26092 plypf1 26133 ply1lvec 33170 evls1fpws 33182 evls1vsca 33187 ply1ascl1 33188 ply1asclunit 33190 asclply1subcl 33193 coe1mon 33195 ply1degltlss 33199 gsummoncoe1fzo 33200 q1pvsca 33206 r1pvsca 33207 r1p0 33208 r1plmhm 33212 ply1degltdimlem 33252 irngnzply1lem 33300 evls1maplmhm 33306 algextdeglem8 33328 ply1vr1smo 47373 ply1sclrmsm 47374 ply1mulgsumlem4 47380 ply1mulgsum 47381 |
Copyright terms: Public domain | W3C validator |