MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagf Structured version   Visualization version   GIF version

Theorem psrbagf 21803
Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagf (𝐹𝐷𝐹:𝐼⟶ℕ0)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbagf
StepHypRef Expression
1 psrbag.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
21eleq2i 2820 . 2 (𝐹𝐷𝐹 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3 elrabi 3651 . . 3 (𝐹 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝐹 ∈ (ℕ0m 𝐼))
4 elmapi 8799 . . 3 (𝐹 ∈ (ℕ0m 𝐼) → 𝐹:𝐼⟶ℕ0)
53, 4syl 17 . 2 (𝐹 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝐹:𝐼⟶ℕ0)
62, 5sylbi 217 1 (𝐹𝐷𝐹:𝐼⟶ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3402  ccnv 5630  cima 5634  wf 6495  (class class class)co 7369  m cmap 8776  Fincfn 8895  cn 12162  0cn0 12418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778
This theorem is referenced by:  psrbagfsupp  21804  psrbaglesupp  21807  psrbaglecl  21808  psrbagaddcl  21809  psrbagcon  21810  psrbaglefi  21811  psrbagconcl  21812  psrbagleadd1  21813  psrbagconf1o  21814  gsumbagdiaglem  21815  psrass1lem  21817  rhmpsrlem2  21826  psrlidm  21847  psrridm  21848  psrass1  21849  psrcom  21853  mplsubrglem  21889  mplmonmul  21919  psrbagev1  21960  evlslem3  21963  evlslem1  21965  mhpmulcl  22012  psdcl  22024  psdmplcl  22025  psdadd  22026  psdvsca  22027  psdmul  22029  psdmvr  22032  psropprmul  22098  tdeglem1  25939  tdeglem3  25940  tdeglem4  25941  mdegmullem  25959  psrbagres  42507  evlsvvvallem  42522  evlsvvval  42524  selvvvval  42546  evlselvlem  42547  evlselv  42548  mhphflem  42557  mhphf  42558
  Copyright terms: Public domain W3C validator