MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagf Structured version   Visualization version   GIF version

Theorem psrbagf 21031
Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagf (𝐹𝐷𝐹:𝐼⟶ℕ0)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbagf
StepHypRef Expression
1 psrbag.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
21eleq2i 2830 . 2 (𝐹𝐷𝐹 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3 elrabi 3611 . . 3 (𝐹 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝐹 ∈ (ℕ0m 𝐼))
4 elmapi 8595 . . 3 (𝐹 ∈ (ℕ0m 𝐼) → 𝐹:𝐼⟶ℕ0)
53, 4syl 17 . 2 (𝐹 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝐹:𝐼⟶ℕ0)
62, 5sylbi 216 1 (𝐹𝐷𝐹:𝐼⟶ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067  ccnv 5579  cima 5583  wf 6414  (class class class)co 7255  m cmap 8573  Fincfn 8691  cn 11903  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575
This theorem is referenced by:  psrbagfsupp  21033  psrbaglesupp  21037  psrbaglecl  21039  psrbagaddcl  21041  psrbagcon  21043  psrbaglefi  21045  psrbagconcl  21047  psrbagconf1o  21049  gsumbagdiaglem  21054  psrass1lem  21056  psrmulcllem  21066  psrlidm  21082  psrridm  21083  psrass1  21084  psrcom  21088  mplsubrglem  21120  mplmonmul  21147  psrbagev1  21195  evlslem3  21200  evlslem1  21202  mhpmulcl  21249  psropprmul  21319  tdeglem1  25125  tdeglem3  25127  tdeglem4  25129  mdegmullem  25148  evlsbagval  40198  mhphflem  40207
  Copyright terms: Public domain W3C validator