| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrbagf | Structured version Visualization version GIF version | ||
| Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrbagf | ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | 1 | eleq2i 2825 | . 2 ⊢ (𝐹 ∈ 𝐷 ↔ 𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) |
| 3 | elrabi 3639 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝐹 ∈ (ℕ0 ↑m 𝐼)) | |
| 4 | elmapi 8782 | . . 3 ⊢ (𝐹 ∈ (ℕ0 ↑m 𝐼) → 𝐹:𝐼⟶ℕ0) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝐹:𝐼⟶ℕ0) |
| 6 | 2, 5 | sylbi 217 | 1 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 ◡ccnv 5620 “ cima 5624 ⟶wf 6485 (class class class)co 7355 ↑m cmap 8759 Fincfn 8879 ℕcn 12136 ℕ0cn0 12392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 |
| This theorem is referenced by: psrbagfsupp 21866 psrbaglesupp 21869 psrbaglecl 21870 psrbagaddcl 21871 psrbagcon 21872 psrbaglefi 21873 psrbagconcl 21874 psrbagleadd1 21875 psrbagconf1o 21876 gsumbagdiaglem 21877 psrass1lem 21879 rhmpsrlem2 21888 psrlidm 21908 psrridm 21909 psrass1 21910 psrcom 21914 mplsubrglem 21950 mplmonmul 21982 psrbagev1 22023 evlslem3 22026 evlslem1 22028 evlsvvvallem 22037 evlsvvval 22039 mhpmulcl 22083 psdcl 22095 psdmplcl 22096 psdadd 22097 psdvsca 22098 psdmul 22100 psdmvr 22103 psropprmul 22169 tdeglem1 26010 tdeglem3 26011 tdeglem4 26012 mdegmullem 26030 mplvrpmfgalem 33637 psrbagres 42714 selvvvval 42743 evlselvlem 42744 evlselv 42745 mhphflem 42754 mhphf 42755 |
| Copyright terms: Public domain | W3C validator |