MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagf Structured version   Visualization version   GIF version

Theorem psrbagf 21865
Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagf (𝐹𝐷𝐹:𝐼⟶ℕ0)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbagf
StepHypRef Expression
1 psrbag.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
21eleq2i 2825 . 2 (𝐹𝐷𝐹 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3 elrabi 3639 . . 3 (𝐹 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝐹 ∈ (ℕ0m 𝐼))
4 elmapi 8782 . . 3 (𝐹 ∈ (ℕ0m 𝐼) → 𝐹:𝐼⟶ℕ0)
53, 4syl 17 . 2 (𝐹 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝐹:𝐼⟶ℕ0)
62, 5sylbi 217 1 (𝐹𝐷𝐹:𝐼⟶ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  ccnv 5620  cima 5624  wf 6485  (class class class)co 7355  m cmap 8759  Fincfn 8879  cn 12136  0cn0 12392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761
This theorem is referenced by:  psrbagfsupp  21866  psrbaglesupp  21869  psrbaglecl  21870  psrbagaddcl  21871  psrbagcon  21872  psrbaglefi  21873  psrbagconcl  21874  psrbagleadd1  21875  psrbagconf1o  21876  gsumbagdiaglem  21877  psrass1lem  21879  rhmpsrlem2  21888  psrlidm  21908  psrridm  21909  psrass1  21910  psrcom  21914  mplsubrglem  21950  mplmonmul  21982  psrbagev1  22023  evlslem3  22026  evlslem1  22028  evlsvvvallem  22037  evlsvvval  22039  mhpmulcl  22083  psdcl  22095  psdmplcl  22096  psdadd  22097  psdvsca  22098  psdmul  22100  psdmvr  22103  psropprmul  22169  tdeglem1  26010  tdeglem3  26011  tdeglem4  26012  mdegmullem  26030  mplvrpmfgalem  33637  psrbagres  42714  selvvvval  42743  evlselvlem  42744  evlselv  42745  mhphflem  42754  mhphf  42755
  Copyright terms: Public domain W3C validator