![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagf | Structured version Visualization version GIF version |
Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.) |
Ref | Expression |
---|---|
psrbag.d | β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
Ref | Expression |
---|---|
psrbagf | β’ (πΉ β π· β πΉ:πΌβΆβ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbag.d | . . 3 β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
2 | 1 | eleq2i 2823 | . 2 β’ (πΉ β π· β πΉ β {π β (β0 βm πΌ) β£ (β‘π β β) β Fin}) |
3 | elrabi 3676 | . . 3 β’ (πΉ β {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} β πΉ β (β0 βm πΌ)) | |
4 | elmapi 8845 | . . 3 β’ (πΉ β (β0 βm πΌ) β πΉ:πΌβΆβ0) | |
5 | 3, 4 | syl 17 | . 2 β’ (πΉ β {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} β πΉ:πΌβΆβ0) |
6 | 2, 5 | sylbi 216 | 1 β’ (πΉ β π· β πΉ:πΌβΆβ0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 {crab 3430 β‘ccnv 5674 β cima 5678 βΆwf 6538 (class class class)co 7411 βm cmap 8822 Fincfn 8941 βcn 12216 β0cn0 12476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-map 8824 |
This theorem is referenced by: psrbagfsupp 21692 psrbaglesupp 21696 psrbaglecl 21698 psrbagaddcl 21700 psrbagcon 21702 psrbaglefi 21704 psrbagconcl 21706 psrbagconf1o 21708 gsumbagdiaglem 21713 psrass1lem 21715 psrmulcllem 21725 psrlidm 21742 psrridm 21743 psrass1 21744 psrcom 21748 mplsubrglem 21782 mplmonmul 21810 psrbagev1 21857 evlslem3 21862 evlslem1 21864 mhpmulcl 21911 psropprmul 21980 tdeglem1 25808 tdeglem3 25810 tdeglem4 25812 mdegmullem 25831 psrbagres 41417 rhmmpllem2 41424 rhmcomulmpl 41426 evlsvvvallem 41435 evlsvvval 41437 selvvvval 41459 evlselvlem 41460 evlselv 41461 mhphflem 41470 mhphf 41471 |
Copyright terms: Public domain | W3C validator |