MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagf Structured version   Visualization version   GIF version

Theorem psrbagf 21843
Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagf (𝐹𝐷𝐹:𝐼⟶ℕ0)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼
Allowed substitution hint:   𝐷(𝑓)

Proof of Theorem psrbagf
StepHypRef Expression
1 psrbag.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
21eleq2i 2820 . 2 (𝐹𝐷𝐹 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
3 elrabi 3645 . . 3 (𝐹 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝐹 ∈ (ℕ0m 𝐼))
4 elmapi 8783 . . 3 (𝐹 ∈ (ℕ0m 𝐼) → 𝐹:𝐼⟶ℕ0)
53, 4syl 17 . 2 (𝐹 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝐹:𝐼⟶ℕ0)
62, 5sylbi 217 1 (𝐹𝐷𝐹:𝐼⟶ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396  ccnv 5622  cima 5626  wf 6482  (class class class)co 7353  m cmap 8760  Fincfn 8879  cn 12146  0cn0 12402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762
This theorem is referenced by:  psrbagfsupp  21844  psrbaglesupp  21847  psrbaglecl  21848  psrbagaddcl  21849  psrbagcon  21850  psrbaglefi  21851  psrbagconcl  21852  psrbagleadd1  21853  psrbagconf1o  21854  gsumbagdiaglem  21855  psrass1lem  21857  rhmpsrlem2  21866  psrlidm  21887  psrridm  21888  psrass1  21889  psrcom  21893  mplsubrglem  21929  mplmonmul  21959  psrbagev1  22000  evlslem3  22003  evlslem1  22005  mhpmulcl  22052  psdcl  22064  psdmplcl  22065  psdadd  22066  psdvsca  22067  psdmul  22069  psdmvr  22072  psropprmul  22138  tdeglem1  25979  tdeglem3  25980  tdeglem4  25981  mdegmullem  25999  psrbagres  42522  evlsvvvallem  42537  evlsvvval  42539  selvvvval  42561  evlselvlem  42562  evlselv  42563  mhphflem  42572  mhphf  42573
  Copyright terms: Public domain W3C validator