| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrbagf | Structured version Visualization version GIF version | ||
| Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrbagf | ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝐹 ∈ 𝐷 ↔ 𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) |
| 3 | elrabi 3651 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝐹 ∈ (ℕ0 ↑m 𝐼)) | |
| 4 | elmapi 8799 | . . 3 ⊢ (𝐹 ∈ (ℕ0 ↑m 𝐼) → 𝐹:𝐼⟶ℕ0) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝐹:𝐼⟶ℕ0) |
| 6 | 2, 5 | sylbi 217 | 1 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 ◡ccnv 5630 “ cima 5634 ⟶wf 6495 (class class class)co 7369 ↑m cmap 8776 Fincfn 8895 ℕcn 12162 ℕ0cn0 12418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-map 8778 |
| This theorem is referenced by: psrbagfsupp 21804 psrbaglesupp 21807 psrbaglecl 21808 psrbagaddcl 21809 psrbagcon 21810 psrbaglefi 21811 psrbagconcl 21812 psrbagleadd1 21813 psrbagconf1o 21814 gsumbagdiaglem 21815 psrass1lem 21817 rhmpsrlem2 21826 psrlidm 21847 psrridm 21848 psrass1 21849 psrcom 21853 mplsubrglem 21889 mplmonmul 21919 psrbagev1 21960 evlslem3 21963 evlslem1 21965 mhpmulcl 22012 psdcl 22024 psdmplcl 22025 psdadd 22026 psdvsca 22027 psdmul 22029 psdmvr 22032 psropprmul 22098 tdeglem1 25939 tdeglem3 25940 tdeglem4 25941 mdegmullem 25959 psrbagres 42507 evlsvvvallem 42522 evlsvvval 42524 selvvvval 42546 evlselvlem 42547 evlselv 42548 mhphflem 42557 mhphf 42558 |
| Copyright terms: Public domain | W3C validator |