![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagf | Structured version Visualization version GIF version |
Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.) |
Ref | Expression |
---|---|
psrbag.d | β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
Ref | Expression |
---|---|
psrbagf | β’ (πΉ β π· β πΉ:πΌβΆβ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbag.d | . . 3 β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
2 | 1 | eleq2i 2825 | . 2 β’ (πΉ β π· β πΉ β {π β (β0 βm πΌ) β£ (β‘π β β) β Fin}) |
3 | elrabi 3676 | . . 3 β’ (πΉ β {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} β πΉ β (β0 βm πΌ)) | |
4 | elmapi 8839 | . . 3 β’ (πΉ β (β0 βm πΌ) β πΉ:πΌβΆβ0) | |
5 | 3, 4 | syl 17 | . 2 β’ (πΉ β {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} β πΉ:πΌβΆβ0) |
6 | 2, 5 | sylbi 216 | 1 β’ (πΉ β π· β πΉ:πΌβΆβ0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {crab 3432 β‘ccnv 5674 β cima 5678 βΆwf 6536 (class class class)co 7405 βm cmap 8816 Fincfn 8935 βcn 12208 β0cn0 12468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 |
This theorem is referenced by: psrbagfsupp 21464 psrbaglesupp 21468 psrbaglecl 21470 psrbagaddcl 21472 psrbagcon 21474 psrbaglefi 21476 psrbagconcl 21478 psrbagconf1o 21480 gsumbagdiaglem 21485 psrass1lem 21487 psrmulcllem 21497 psrlidm 21514 psrridm 21515 psrass1 21516 psrcom 21520 mplsubrglem 21554 mplmonmul 21582 psrbagev1 21629 evlslem3 21634 evlslem1 21636 mhpmulcl 21683 psropprmul 21751 tdeglem1 25564 tdeglem3 25566 tdeglem4 25568 mdegmullem 25587 psrbagres 41112 rhmmpllem2 41119 rhmcomulmpl 41121 evlsvvvallem 41130 evlsvvval 41132 selvvvval 41154 evlselvlem 41155 evlselv 41156 mhphflem 41165 mhphf 41166 |
Copyright terms: Public domain | W3C validator |