![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbagf | Structured version Visualization version GIF version |
Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
psrbagf | ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
2 | 1 | eleq2i 2824 | . 2 ⊢ (𝐹 ∈ 𝐷 ↔ 𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) |
3 | elrabi 3677 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝐹 ∈ (ℕ0 ↑m 𝐼)) | |
4 | elmapi 8849 | . . 3 ⊢ (𝐹 ∈ (ℕ0 ↑m 𝐼) → 𝐹:𝐼⟶ℕ0) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝐹:𝐼⟶ℕ0) |
6 | 2, 5 | sylbi 216 | 1 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3431 ◡ccnv 5675 “ cima 5679 ⟶wf 6539 (class class class)co 7412 ↑m cmap 8826 Fincfn 8945 ℕcn 12219 ℕ0cn0 12479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-map 8828 |
This theorem is referenced by: psrbagfsupp 21783 psrbaglesupp 21787 psrbaglecl 21789 psrbagaddcl 21791 psrbagcon 21793 psrbaglefi 21795 psrbagconcl 21797 psrbagconf1o 21799 gsumbagdiaglem 21804 psrass1lem 21806 psrmulcllem 21817 psrlidm 21834 psrridm 21835 psrass1 21836 psrcom 21840 mplsubrglem 21874 mplmonmul 21902 psrbagev1 21949 evlslem3 21954 evlslem1 21956 mhpmulcl 22001 psdcl 22013 psdmplcl 22014 psdadd 22015 psdvsca 22016 psropprmul 22080 tdeglem1 25911 tdeglem3 25913 tdeglem4 25915 mdegmullem 25934 psrbagres 41578 rhmmpllem2 41585 rhmcomulmpl 41587 evlsvvvallem 41596 evlsvvval 41598 selvvvval 41620 evlselvlem 41621 evlselv 41622 mhphflem 41631 mhphf 41632 |
Copyright terms: Public domain | W3C validator |