| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrbagf | Structured version Visualization version GIF version | ||
| Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.) |
| Ref | Expression |
|---|---|
| psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| Ref | Expression |
|---|---|
| psrbagf | ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 2 | 1 | eleq2i 2821 | . 2 ⊢ (𝐹 ∈ 𝐷 ↔ 𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) |
| 3 | elrabi 3657 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝐹 ∈ (ℕ0 ↑m 𝐼)) | |
| 4 | elmapi 8825 | . . 3 ⊢ (𝐹 ∈ (ℕ0 ↑m 𝐼) → 𝐹:𝐼⟶ℕ0) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝐹:𝐼⟶ℕ0) |
| 6 | 2, 5 | sylbi 217 | 1 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 ◡ccnv 5640 “ cima 5644 ⟶wf 6510 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 ℕcn 12193 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 |
| This theorem is referenced by: psrbagfsupp 21835 psrbaglesupp 21838 psrbaglecl 21839 psrbagaddcl 21840 psrbagcon 21841 psrbaglefi 21842 psrbagconcl 21843 psrbagleadd1 21844 psrbagconf1o 21845 gsumbagdiaglem 21846 psrass1lem 21848 rhmpsrlem2 21857 psrlidm 21878 psrridm 21879 psrass1 21880 psrcom 21884 mplsubrglem 21920 mplmonmul 21950 psrbagev1 21991 evlslem3 21994 evlslem1 21996 mhpmulcl 22043 psdcl 22055 psdmplcl 22056 psdadd 22057 psdvsca 22058 psdmul 22060 psdmvr 22063 psropprmul 22129 tdeglem1 25970 tdeglem3 25971 tdeglem4 25972 mdegmullem 25990 psrbagres 42541 evlsvvvallem 42556 evlsvvval 42558 selvvvval 42580 evlselvlem 42581 evlselv 42582 mhphflem 42591 mhphf 42592 |
| Copyright terms: Public domain | W3C validator |