Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrbagf | Structured version Visualization version GIF version |
Description: A finite bag is a function. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 30-Jul-2024.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
psrbagf | ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
2 | 1 | eleq2i 2843 | . 2 ⊢ (𝐹 ∈ 𝐷 ↔ 𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) |
3 | elrabi 3596 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝐹 ∈ (ℕ0 ↑m 𝐼)) | |
4 | elmapi 8438 | . . 3 ⊢ (𝐹 ∈ (ℕ0 ↑m 𝐼) → 𝐹:𝐼⟶ℕ0) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} → 𝐹:𝐼⟶ℕ0) |
6 | 2, 5 | sylbi 220 | 1 ⊢ (𝐹 ∈ 𝐷 → 𝐹:𝐼⟶ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 {crab 3074 ◡ccnv 5523 “ cima 5527 ⟶wf 6331 (class class class)co 7150 ↑m cmap 8416 Fincfn 8527 ℕcn 11674 ℕ0cn0 11934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-1st 7693 df-2nd 7694 df-map 8418 |
This theorem is referenced by: psrbagfsupp 20682 psrbaglesupp 20686 psrbaglecl 20688 psrbagaddcl 20690 psrbagcon 20692 psrbaglefi 20694 psrbagconcl 20696 psrbagconf1o 20698 gsumbagdiaglem 20703 psrass1lem 20705 psrmulcllem 20715 psrlidm 20731 psrridm 20732 psrass1 20733 psrcom 20737 mplsubrglem 20769 mplmonmul 20796 psrbagev1 20838 evlslem3 20843 evlslem1 20845 mhpmulcl 20892 psropprmul 20962 tdeglem1 24755 tdeglem3 24757 tdeglem4 24759 mdegmullem 24778 evlsbagval 39802 mhphflem 39811 |
Copyright terms: Public domain | W3C validator |