MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconcl Structured version   Visualization version   GIF version

Theorem psrbagconcl 21864
Description: The complement of a bag is a bag. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
Assertion
Ref Expression
psrbagconcl ((𝐹𝐷𝑋𝑆) → (𝐹f𝑋) ∈ 𝑆)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑦,𝐷   𝑦,𝐹   𝑓,𝑋   𝑦,𝑋
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑦)

Proof of Theorem psrbagconcl
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹𝐷𝑋𝑆) → 𝐹𝐷)
2 simpr 484 . . . . . 6 ((𝐹𝐷𝑋𝑆) → 𝑋𝑆)
3 breq1 5092 . . . . . . 7 (𝑦 = 𝑋 → (𝑦r𝐹𝑋r𝐹))
4 psrbagconf1o.s . . . . . . 7 𝑆 = {𝑦𝐷𝑦r𝐹}
53, 4elrab2 3645 . . . . . 6 (𝑋𝑆 ↔ (𝑋𝐷𝑋r𝐹))
62, 5sylib 218 . . . . 5 ((𝐹𝐷𝑋𝑆) → (𝑋𝐷𝑋r𝐹))
76simpld 494 . . . 4 ((𝐹𝐷𝑋𝑆) → 𝑋𝐷)
8 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
98psrbagf 21855 . . . 4 (𝑋𝐷𝑋:𝐼⟶ℕ0)
107, 9syl 17 . . 3 ((𝐹𝐷𝑋𝑆) → 𝑋:𝐼⟶ℕ0)
116simprd 495 . . 3 ((𝐹𝐷𝑋𝑆) → 𝑋r𝐹)
128psrbagcon 21862 . . 3 ((𝐹𝐷𝑋:𝐼⟶ℕ0𝑋r𝐹) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
131, 10, 11, 12syl3anc 1373 . 2 ((𝐹𝐷𝑋𝑆) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
14 breq1 5092 . . 3 (𝑦 = (𝐹f𝑋) → (𝑦r𝐹 ↔ (𝐹f𝑋) ∘r𝐹))
1514, 4elrab2 3645 . 2 ((𝐹f𝑋) ∈ 𝑆 ↔ ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
1613, 15sylibr 234 1 ((𝐹𝐷𝑋𝑆) → (𝐹f𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5089  ccnv 5613  cima 5617  wf 6477  (class class class)co 7346  f cof 7608  r cofr 7609  m cmap 8750  Fincfn 8869  cle 11147  cmin 11344  cn 12125  0cn0 12381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382
This theorem is referenced by:  psrbagconf1o  21866  psrass1lem  21869  psrdi  21902  psrdir  21903  psrass23l  21904  psrcom  21905  psrass23  21906  resspsrmul  21913  mplsubrglem  21941  mplmonmul  21971  mhpmulcl  22064  psdmul  22081  psropprmul  22150  rhmcomulmpl  22297  mdegmullem  26010  rhmcomulpsr  42592
  Copyright terms: Public domain W3C validator