MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconcl Structured version   Visualization version   GIF version

Theorem psrbagconcl 21047
Description: The complement of a bag is a bag. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
Assertion
Ref Expression
psrbagconcl ((𝐹𝐷𝑋𝑆) → (𝐹f𝑋) ∈ 𝑆)
Distinct variable groups:   𝑦,𝑓,𝐹   𝑓,𝐼,𝑦   𝑦,𝐷   𝑓,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)

Proof of Theorem psrbagconcl
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹𝐷𝑋𝑆) → 𝐹𝐷)
2 simpr 484 . . . . . 6 ((𝐹𝐷𝑋𝑆) → 𝑋𝑆)
3 breq1 5073 . . . . . . 7 (𝑦 = 𝑋 → (𝑦r𝐹𝑋r𝐹))
4 psrbagconf1o.s . . . . . . 7 𝑆 = {𝑦𝐷𝑦r𝐹}
53, 4elrab2 3620 . . . . . 6 (𝑋𝑆 ↔ (𝑋𝐷𝑋r𝐹))
62, 5sylib 217 . . . . 5 ((𝐹𝐷𝑋𝑆) → (𝑋𝐷𝑋r𝐹))
76simpld 494 . . . 4 ((𝐹𝐷𝑋𝑆) → 𝑋𝐷)
8 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
98psrbagf 21031 . . . 4 (𝑋𝐷𝑋:𝐼⟶ℕ0)
107, 9syl 17 . . 3 ((𝐹𝐷𝑋𝑆) → 𝑋:𝐼⟶ℕ0)
116simprd 495 . . 3 ((𝐹𝐷𝑋𝑆) → 𝑋r𝐹)
128psrbagcon 21043 . . 3 ((𝐹𝐷𝑋:𝐼⟶ℕ0𝑋r𝐹) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
131, 10, 11, 12syl3anc 1369 . 2 ((𝐹𝐷𝑋𝑆) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
14 breq1 5073 . . 3 (𝑦 = (𝐹f𝑋) → (𝑦r𝐹 ↔ (𝐹f𝑋) ∘r𝐹))
1514, 4elrab2 3620 . 2 ((𝐹f𝑋) ∈ 𝑆 ↔ ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
1613, 15sylibr 233 1 ((𝐹𝐷𝑋𝑆) → (𝐹f𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067   class class class wbr 5070  ccnv 5579  cima 5583  wf 6414  (class class class)co 7255  f cof 7509  r cofr 7510  m cmap 8573  Fincfn 8691  cle 10941  cmin 11135  cn 11903  0cn0 12163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164
This theorem is referenced by:  psrbagconf1o  21049  psrass1lem  21056  psrdi  21085  psrdir  21086  psrass23l  21087  psrcom  21088  psrass23  21089  resspsrmul  21096  mplsubrglem  21120  mplmonmul  21147  mhpmulcl  21249  psropprmul  21319  mdegmullem  25148
  Copyright terms: Public domain W3C validator