Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconcl Structured version   Visualization version   GIF version

Theorem psrbagconcl 20129
 Description: The complement of a bag is a bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.1 𝑆 = {𝑦𝐷𝑦r𝐹}
Assertion
Ref Expression
psrbagconcl ((𝐼𝑉𝐹𝐷𝑋𝑆) → (𝐹f𝑋) ∈ 𝑆)
Distinct variable groups:   𝑦,𝑓,𝐹   𝑦,𝑉   𝑓,𝐼,𝑦   𝑦,𝐷   𝑓,𝑋,𝑦
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝑉(𝑓)

Proof of Theorem psrbagconcl
StepHypRef Expression
1 simp1 1133 . . 3 ((𝐼𝑉𝐹𝐷𝑋𝑆) → 𝐼𝑉)
2 simp2 1134 . . 3 ((𝐼𝑉𝐹𝐷𝑋𝑆) → 𝐹𝐷)
3 simp3 1135 . . . . . 6 ((𝐼𝑉𝐹𝐷𝑋𝑆) → 𝑋𝑆)
4 breq1 5042 . . . . . . 7 (𝑦 = 𝑋 → (𝑦r𝐹𝑋r𝐹))
5 psrbagconf1o.1 . . . . . . 7 𝑆 = {𝑦𝐷𝑦r𝐹}
64, 5elrab2 3660 . . . . . 6 (𝑋𝑆 ↔ (𝑋𝐷𝑋r𝐹))
73, 6sylib 221 . . . . 5 ((𝐼𝑉𝐹𝐷𝑋𝑆) → (𝑋𝐷𝑋r𝐹))
87simpld 498 . . . 4 ((𝐼𝑉𝐹𝐷𝑋𝑆) → 𝑋𝐷)
9 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
109psrbagf 20121 . . . 4 ((𝐼𝑉𝑋𝐷) → 𝑋:𝐼⟶ℕ0)
111, 8, 10syl2anc 587 . . 3 ((𝐼𝑉𝐹𝐷𝑋𝑆) → 𝑋:𝐼⟶ℕ0)
127simprd 499 . . 3 ((𝐼𝑉𝐹𝐷𝑋𝑆) → 𝑋r𝐹)
139psrbagcon 20127 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝑋:𝐼⟶ℕ0𝑋r𝐹)) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
141, 2, 11, 12, 13syl13anc 1369 . 2 ((𝐼𝑉𝐹𝐷𝑋𝑆) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
15 breq1 5042 . . 3 (𝑦 = (𝐹f𝑋) → (𝑦r𝐹 ↔ (𝐹f𝑋) ∘r𝐹))
1615, 5elrab2 3660 . 2 ((𝐹f𝑋) ∈ 𝑆 ↔ ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
1714, 16sylibr 237 1 ((𝐼𝑉𝐹𝐷𝑋𝑆) → (𝐹f𝑋) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  {crab 3130   class class class wbr 5039  ◡ccnv 5527   “ cima 5531  ⟶wf 6324  (class class class)co 7130   ∘f cof 7382   ∘r cofr 7383   ↑m cmap 8381  Fincfn 8484   ≤ cle 10653   − cmin 10847  ℕcn 11615  ℕ0cn0 11875 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-of 7384  df-ofr 7385  df-om 7556  df-supp 7806  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876 This theorem is referenced by:  psrass1lem  20133  psrdi  20162  psrdir  20163  psrass23l  20164  psrcom  20165  psrass23  20166  resspsrmul  20173  mplsubrglem  20195  mplmonmul  20221  psropprmul  20382  mdegmullem  24658
 Copyright terms: Public domain W3C validator