MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconcl Structured version   Visualization version   GIF version

Theorem psrbagconcl 21836
Description: The complement of a bag is a bag. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
Assertion
Ref Expression
psrbagconcl ((𝐹𝐷𝑋𝑆) → (𝐹f𝑋) ∈ 𝑆)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑦,𝐷   𝑦,𝐹   𝑓,𝑋   𝑦,𝑋
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑦)

Proof of Theorem psrbagconcl
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹𝐷𝑋𝑆) → 𝐹𝐷)
2 simpr 484 . . . . . 6 ((𝐹𝐷𝑋𝑆) → 𝑋𝑆)
3 breq1 5110 . . . . . . 7 (𝑦 = 𝑋 → (𝑦r𝐹𝑋r𝐹))
4 psrbagconf1o.s . . . . . . 7 𝑆 = {𝑦𝐷𝑦r𝐹}
53, 4elrab2 3662 . . . . . 6 (𝑋𝑆 ↔ (𝑋𝐷𝑋r𝐹))
62, 5sylib 218 . . . . 5 ((𝐹𝐷𝑋𝑆) → (𝑋𝐷𝑋r𝐹))
76simpld 494 . . . 4 ((𝐹𝐷𝑋𝑆) → 𝑋𝐷)
8 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
98psrbagf 21827 . . . 4 (𝑋𝐷𝑋:𝐼⟶ℕ0)
107, 9syl 17 . . 3 ((𝐹𝐷𝑋𝑆) → 𝑋:𝐼⟶ℕ0)
116simprd 495 . . 3 ((𝐹𝐷𝑋𝑆) → 𝑋r𝐹)
128psrbagcon 21834 . . 3 ((𝐹𝐷𝑋:𝐼⟶ℕ0𝑋r𝐹) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
131, 10, 11, 12syl3anc 1373 . 2 ((𝐹𝐷𝑋𝑆) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
14 breq1 5110 . . 3 (𝑦 = (𝐹f𝑋) → (𝑦r𝐹 ↔ (𝐹f𝑋) ∘r𝐹))
1514, 4elrab2 3662 . 2 ((𝐹f𝑋) ∈ 𝑆 ↔ ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
1613, 15sylibr 234 1 ((𝐹𝐷𝑋𝑆) → (𝐹f𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405   class class class wbr 5107  ccnv 5637  cima 5641  wf 6507  (class class class)co 7387  f cof 7651  r cofr 7652  m cmap 8799  Fincfn 8918  cle 11209  cmin 11405  cn 12186  0cn0 12442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443
This theorem is referenced by:  psrbagconf1o  21838  psrass1lem  21841  psrdi  21874  psrdir  21875  psrass23l  21876  psrcom  21877  psrass23  21878  resspsrmul  21885  mplsubrglem  21913  mplmonmul  21943  mhpmulcl  22036  psdmul  22053  psropprmul  22122  rhmcomulmpl  22269  mdegmullem  25983  rhmcomulpsr  42539
  Copyright terms: Public domain W3C validator