MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagconcl Structured version   Visualization version   GIF version

Theorem psrbagconcl 21970
Description: The complement of a bag is a bag. (Contributed by Mario Carneiro, 29-Dec-2014.) Remove a sethood antecedent. (Revised by SN, 6-Aug-2024.)
Hypotheses
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbagconf1o.s 𝑆 = {𝑦𝐷𝑦r𝐹}
Assertion
Ref Expression
psrbagconcl ((𝐹𝐷𝑋𝑆) → (𝐹f𝑋) ∈ 𝑆)
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼   𝑦,𝐷   𝑦,𝐹   𝑓,𝑋   𝑦,𝑋
Allowed substitution hints:   𝐷(𝑓)   𝑆(𝑦,𝑓)   𝐼(𝑦)

Proof of Theorem psrbagconcl
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹𝐷𝑋𝑆) → 𝐹𝐷)
2 simpr 484 . . . . . 6 ((𝐹𝐷𝑋𝑆) → 𝑋𝑆)
3 breq1 5169 . . . . . . 7 (𝑦 = 𝑋 → (𝑦r𝐹𝑋r𝐹))
4 psrbagconf1o.s . . . . . . 7 𝑆 = {𝑦𝐷𝑦r𝐹}
53, 4elrab2 3711 . . . . . 6 (𝑋𝑆 ↔ (𝑋𝐷𝑋r𝐹))
62, 5sylib 218 . . . . 5 ((𝐹𝐷𝑋𝑆) → (𝑋𝐷𝑋r𝐹))
76simpld 494 . . . 4 ((𝐹𝐷𝑋𝑆) → 𝑋𝐷)
8 psrbag.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
98psrbagf 21961 . . . 4 (𝑋𝐷𝑋:𝐼⟶ℕ0)
107, 9syl 17 . . 3 ((𝐹𝐷𝑋𝑆) → 𝑋:𝐼⟶ℕ0)
116simprd 495 . . 3 ((𝐹𝐷𝑋𝑆) → 𝑋r𝐹)
128psrbagcon 21968 . . 3 ((𝐹𝐷𝑋:𝐼⟶ℕ0𝑋r𝐹) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
131, 10, 11, 12syl3anc 1371 . 2 ((𝐹𝐷𝑋𝑆) → ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
14 breq1 5169 . . 3 (𝑦 = (𝐹f𝑋) → (𝑦r𝐹 ↔ (𝐹f𝑋) ∘r𝐹))
1514, 4elrab2 3711 . 2 ((𝐹f𝑋) ∈ 𝑆 ↔ ((𝐹f𝑋) ∈ 𝐷 ∧ (𝐹f𝑋) ∘r𝐹))
1613, 15sylibr 234 1 ((𝐹𝐷𝑋𝑆) → (𝐹f𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  ccnv 5699  cima 5703  wf 6569  (class class class)co 7448  f cof 7712  r cofr 7713  m cmap 8884  Fincfn 9003  cle 11325  cmin 11520  cn 12293  0cn0 12553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554
This theorem is referenced by:  psrbagconf1o  21972  psrass1lem  21975  psrdi  22008  psrdir  22009  psrass23l  22010  psrcom  22011  psrass23  22012  resspsrmul  22019  mplsubrglem  22047  mplmonmul  22077  mhpmulcl  22176  psdmul  22193  psropprmul  22260  rhmcomulmpl  22407  mdegmullem  26137  rhmcomulpsr  42506
  Copyright terms: Public domain W3C validator