Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. 2
β’
(Baseβπ
) =
(Baseβπ
) |
2 | | eqid 2732 |
. 2
β’
(0gβπ
) = (0gβπ
) |
3 | | rhmmpllem1.r |
. . . 4
β’ (π β π
β Ring) |
4 | 3 | ringcmnd 20094 |
. . 3
β’ (π β π
β CMnd) |
5 | 4 | adantr 481 |
. 2
β’ ((π β§ π β π·) β π
β CMnd) |
6 | | rhmmpllem1.d |
. . . 4
β’ π· = {π β (β0
βm πΌ)
β£ (β‘π β β) β
Fin} |
7 | 6 | psrbaglefi 21476 |
. . 3
β’ (π β π· β {π¦ β π· β£ π¦ βr β€ π} β Fin) |
8 | 7 | adantl 482 |
. 2
β’ ((π β§ π β π·) β {π¦ β π· β£ π¦ βr β€ π} β Fin) |
9 | | eqid 2732 |
. . . 4
β’
(.rβπ
) = (.rβπ
) |
10 | 3 | ad2antrr 724 |
. . . 4
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β π
β Ring) |
11 | | rhmmpllem1.x |
. . . . . 6
β’ (π β π:π·βΆ(Baseβπ
)) |
12 | 11 | ad2antrr 724 |
. . . . 5
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β π:π·βΆ(Baseβπ
)) |
13 | | breq1 5150 |
. . . . . . . . 9
β’ (π¦ = π₯ β (π¦ βr β€ π β π₯ βr β€ π)) |
14 | 13 | elrab 3682 |
. . . . . . . 8
β’ (π₯ β {π¦ β π· β£ π¦ βr β€ π} β (π₯ β π· β§ π₯ βr β€ π)) |
15 | 14 | biimpi 215 |
. . . . . . 7
β’ (π₯ β {π¦ β π· β£ π¦ βr β€ π} β (π₯ β π· β§ π₯ βr β€ π)) |
16 | 15 | adantl 482 |
. . . . . 6
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β (π₯ β π· β§ π₯ βr β€ π)) |
17 | 16 | simpld 495 |
. . . . 5
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β π₯ β π·) |
18 | 12, 17 | ffvelcdmd 7084 |
. . . 4
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β (πβπ₯) β (Baseβπ
)) |
19 | | rhmmpllem1.y |
. . . . . 6
β’ (π β π:π·βΆ(Baseβπ
)) |
20 | 19 | ad2antrr 724 |
. . . . 5
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β π:π·βΆ(Baseβπ
)) |
21 | | simplr 767 |
. . . . . . 7
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β π β π·) |
22 | 6 | psrbagf 21462 |
. . . . . . . 8
β’ (π₯ β π· β π₯:πΌβΆβ0) |
23 | 17, 22 | syl 17 |
. . . . . . 7
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β π₯:πΌβΆβ0) |
24 | 16 | simprd 496 |
. . . . . . 7
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β π₯ βr β€ π) |
25 | 6 | psrbagcon 21474 |
. . . . . . 7
β’ ((π β π· β§ π₯:πΌβΆβ0 β§ π₯ βr β€ π) β ((π βf β π₯) β π· β§ (π βf β π₯) βr β€ π)) |
26 | 21, 23, 24, 25 | syl3anc 1371 |
. . . . . 6
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β ((π βf β π₯) β π· β§ (π βf β π₯) βr β€ π)) |
27 | 26 | simpld 495 |
. . . . 5
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β (π βf β π₯) β π·) |
28 | 20, 27 | ffvelcdmd 7084 |
. . . 4
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β (πβ(π βf β π₯)) β (Baseβπ
)) |
29 | 1, 9, 10, 18, 28 | ringcld 20073 |
. . 3
β’ (((π β§ π β π·) β§ π₯ β {π¦ β π· β£ π¦ βr β€ π}) β ((πβπ₯)(.rβπ
)(πβ(π βf β π₯))) β (Baseβπ
)) |
30 | 29 | fmpttd 7111 |
. 2
β’ ((π β§ π β π·) β (π₯ β {π¦ β π· β£ π¦ βr β€ π} β¦ ((πβπ₯)(.rβπ
)(πβ(π βf β π₯)))):{π¦ β π· β£ π¦ βr β€ π}βΆ(Baseβπ
)) |
31 | 6, 3, 11, 19 | rhmmpllem1 41118 |
. 2
β’ ((π β§ π β π·) β (π₯ β {π¦ β π· β£ π¦ βr β€ π} β¦ ((πβπ₯)(.rβπ
)(πβ(π βf β π₯)))) finSupp
(0gβπ
)) |
32 | 1, 2, 5, 8, 30, 31 | gsumcl 19777 |
1
β’ ((π β§ π β π·) β (π
Ξ£g (π₯ β {π¦ β π· β£ π¦ βr β€ π} β¦ ((πβπ₯)(.rβπ
)(πβ(π βf β π₯))))) β (Baseβπ
)) |