|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > psrbag | Structured version Visualization version GIF version | ||
| Description: Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | 
| Ref | Expression | 
|---|---|
| psrbag | ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnveq 5883 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
| 2 | 1 | imaeq1d 6076 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ ℕ) = (◡𝐹 “ ℕ)) | 
| 3 | 2 | eleq1d 2825 | . . 3 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐹 “ ℕ) ∈ Fin)) | 
| 4 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 5 | 3, 4 | elrab2 3694 | . 2 ⊢ (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ (ℕ0 ↑m 𝐼) ∧ (◡𝐹 “ ℕ) ∈ Fin)) | 
| 6 | nn0ex 12534 | . . . 4 ⊢ ℕ0 ∈ V | |
| 7 | elmapg 8880 | . . . 4 ⊢ ((ℕ0 ∈ V ∧ 𝐼 ∈ 𝑉) → (𝐹 ∈ (ℕ0 ↑m 𝐼) ↔ 𝐹:𝐼⟶ℕ0)) | |
| 8 | 6, 7 | mpan 690 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ (ℕ0 ↑m 𝐼) ↔ 𝐹:𝐼⟶ℕ0)) | 
| 9 | 8 | anbi1d 631 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝐹 ∈ (ℕ0 ↑m 𝐼) ∧ (◡𝐹 “ ℕ) ∈ Fin) ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) | 
| 10 | 5, 9 | bitrid 283 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3435 Vcvv 3479 ◡ccnv 5683 “ cima 5687 ⟶wf 6556 (class class class)co 7432 ↑m cmap 8867 Fincfn 8986 ℕcn 12267 ℕ0cn0 12528 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-1cn 11214 ax-addcl 11216 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-map 8869 df-nn 12268 df-n0 12529 | 
| This theorem is referenced by: psrbagfsupp 21940 snifpsrbag 21941 psrbaglecl 21944 psrbagaddcl 21945 psrbagcon 21946 mplcoe5lem 22058 mplcoe5 22059 mplbas2 22061 psrbag0 22087 psrbagsn 22088 evlslem3 22105 mhpmulcl 22154 psrbagres 42561 evlselvlem 42601 evlselv 42602 | 
| Copyright terms: Public domain | W3C validator |