![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbag | Structured version Visualization version GIF version |
Description: Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrbag.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
Ref | Expression |
---|---|
psrbag | ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5887 | . . . . 5 ⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) | |
2 | 1 | imaeq1d 6079 | . . . 4 ⊢ (𝑓 = 𝐹 → (◡𝑓 “ ℕ) = (◡𝐹 “ ℕ)) |
3 | 2 | eleq1d 2824 | . . 3 ⊢ (𝑓 = 𝐹 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐹 “ ℕ) ∈ Fin)) |
4 | psrbag.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
5 | 3, 4 | elrab2 3698 | . 2 ⊢ (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ (ℕ0 ↑m 𝐼) ∧ (◡𝐹 “ ℕ) ∈ Fin)) |
6 | nn0ex 12530 | . . . 4 ⊢ ℕ0 ∈ V | |
7 | elmapg 8878 | . . . 4 ⊢ ((ℕ0 ∈ V ∧ 𝐼 ∈ 𝑉) → (𝐹 ∈ (ℕ0 ↑m 𝐼) ↔ 𝐹:𝐼⟶ℕ0)) | |
8 | 6, 7 | mpan 690 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ (ℕ0 ↑m 𝐼) ↔ 𝐹:𝐼⟶ℕ0)) |
9 | 8 | anbi1d 631 | . 2 ⊢ (𝐼 ∈ 𝑉 → ((𝐹 ∈ (ℕ0 ↑m 𝐼) ∧ (◡𝐹 “ ℕ) ∈ Fin) ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) |
10 | 5, 9 | bitrid 283 | 1 ⊢ (𝐼 ∈ 𝑉 → (𝐹 ∈ 𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (◡𝐹 “ ℕ) ∈ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 Vcvv 3478 ◡ccnv 5688 “ cima 5692 ⟶wf 6559 (class class class)co 7431 ↑m cmap 8865 Fincfn 8984 ℕcn 12264 ℕ0cn0 12524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-map 8867 df-nn 12265 df-n0 12525 |
This theorem is referenced by: psrbagfsupp 21957 snifpsrbag 21958 psrbaglecl 21961 psrbagaddcl 21962 psrbagcon 21963 mplcoe5lem 22075 mplcoe5 22076 mplbas2 22078 psrbag0 22104 psrbagsn 22105 evlslem3 22122 mhpmulcl 22171 psrbagres 42533 evlselvlem 42573 evlselv 42574 |
Copyright terms: Public domain | W3C validator |