MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbag Structured version   Visualization version   GIF version

Theorem psrbag 21807
Description: Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}
Assertion
Ref Expression
psrbag (𝐼 ∈ 𝑉 β†’ (𝐹 ∈ 𝐷 ↔ (𝐹:πΌβŸΆβ„•0 ∧ (◑𝐹 β€œ β„•) ∈ Fin)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbag
StepHypRef Expression
1 cnveq 5866 . . . . 5 (𝑓 = 𝐹 β†’ ◑𝑓 = ◑𝐹)
21imaeq1d 6051 . . . 4 (𝑓 = 𝐹 β†’ (◑𝑓 β€œ β„•) = (◑𝐹 β€œ β„•))
32eleq1d 2812 . . 3 (𝑓 = 𝐹 β†’ ((◑𝑓 β€œ β„•) ∈ Fin ↔ (◑𝐹 β€œ β„•) ∈ Fin))
4 psrbag.d . . 3 𝐷 = {𝑓 ∈ (β„•0 ↑m 𝐼) ∣ (◑𝑓 β€œ β„•) ∈ Fin}
53, 4elrab2 3681 . 2 (𝐹 ∈ 𝐷 ↔ (𝐹 ∈ (β„•0 ↑m 𝐼) ∧ (◑𝐹 β€œ β„•) ∈ Fin))
6 nn0ex 12479 . . . 4 β„•0 ∈ V
7 elmapg 8832 . . . 4 ((β„•0 ∈ V ∧ 𝐼 ∈ 𝑉) β†’ (𝐹 ∈ (β„•0 ↑m 𝐼) ↔ 𝐹:πΌβŸΆβ„•0))
86, 7mpan 687 . . 3 (𝐼 ∈ 𝑉 β†’ (𝐹 ∈ (β„•0 ↑m 𝐼) ↔ 𝐹:πΌβŸΆβ„•0))
98anbi1d 629 . 2 (𝐼 ∈ 𝑉 β†’ ((𝐹 ∈ (β„•0 ↑m 𝐼) ∧ (◑𝐹 β€œ β„•) ∈ Fin) ↔ (𝐹:πΌβŸΆβ„•0 ∧ (◑𝐹 β€œ β„•) ∈ Fin)))
105, 9bitrid 283 1 (𝐼 ∈ 𝑉 β†’ (𝐹 ∈ 𝐷 ↔ (𝐹:πΌβŸΆβ„•0 ∧ (◑𝐹 β€œ β„•) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  {crab 3426  Vcvv 3468  β—‘ccnv 5668   β€œ cima 5672  βŸΆwf 6532  (class class class)co 7404   ↑m cmap 8819  Fincfn 8938  β„•cn 12213  β„•0cn0 12473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-1cn 11167  ax-addcl 11169
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-map 8821  df-nn 12214  df-n0 12474
This theorem is referenced by:  psrbagfOLD  21809  psrbagfsupp  21810  psrbagfsuppOLD  21811  snifpsrbag  21812  psrbaglecl  21816  psrbagleclOLD  21817  psrbagaddcl  21818  psrbagaddclOLD  21819  psrbagcon  21820  psrbagconOLD  21821  psrbaglefiOLD  21823  mplcoe5lem  21932  mplcoe5  21933  mplbas2  21935  psrbag0  21961  psrbagsn  21962  evlslem3  21981  mhpmulcl  22028  psrbagres  41653  evlselvlem  41696  evlselv  41697
  Copyright terms: Public domain W3C validator