Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbag Structured version   Visualization version   GIF version

Theorem psrbag 20136
 Description: Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbag (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbag
StepHypRef Expression
1 cnveq 5737 . . . . 5 (𝑓 = 𝐹𝑓 = 𝐹)
21imaeq1d 5921 . . . 4 (𝑓 = 𝐹 → (𝑓 “ ℕ) = (𝐹 “ ℕ))
32eleq1d 2895 . . 3 (𝑓 = 𝐹 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
4 psrbag.d . . 3 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
53, 4elrab2 3681 . 2 (𝐹𝐷 ↔ (𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
6 nn0ex 11895 . . . 4 0 ∈ V
7 elmapg 8411 . . . 4 ((ℕ0 ∈ V ∧ 𝐼𝑉) → (𝐹 ∈ (ℕ0m 𝐼) ↔ 𝐹:𝐼⟶ℕ0))
86, 7mpan 688 . . 3 (𝐼𝑉 → (𝐹 ∈ (ℕ0m 𝐼) ↔ 𝐹:𝐼⟶ℕ0))
98anbi1d 631 . 2 (𝐼𝑉 → ((𝐹 ∈ (ℕ0m 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin) ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
105, 9syl5bb 285 1 (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1530   ∈ wcel 2107  {crab 3140  Vcvv 3493  ◡ccnv 5547   “ cima 5551  ⟶wf 6344  (class class class)co 7148   ↑m cmap 8398  Fincfn 8501  ℕcn 11630  ℕ0cn0 11889 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-1cn 10587  ax-addcl 10589 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-map 8400  df-nn 11631  df-n0 11890 This theorem is referenced by:  psrbagf  20137  snifpsrbag  20138  psrbaglecl  20141  psrbagaddcl  20142  psrbagcon  20143  psrbaglefi  20144  mplcoe5lem  20240  mplcoe5  20241  mplbas2  20243  psrbag0  20266  psrbagsn  20267  psrbagfsupp  20281  evlslem3  20285
 Copyright terms: Public domain W3C validator