![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrbag | Structured version Visualization version GIF version |
Description: Elementhood in the set of finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrbag.d | β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} |
Ref | Expression |
---|---|
psrbag | β’ (πΌ β π β (πΉ β π· β (πΉ:πΌβΆβ0 β§ (β‘πΉ β β) β Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5874 | . . . . 5 β’ (π = πΉ β β‘π = β‘πΉ) | |
2 | 1 | imaeq1d 6059 | . . . 4 β’ (π = πΉ β (β‘π β β) = (β‘πΉ β β)) |
3 | 2 | eleq1d 2819 | . . 3 β’ (π = πΉ β ((β‘π β β) β Fin β (β‘πΉ β β) β Fin)) |
4 | psrbag.d | . . 3 β’ π· = {π β (β0 βm πΌ) β£ (β‘π β β) β Fin} | |
5 | 3, 4 | elrab2 3687 | . 2 β’ (πΉ β π· β (πΉ β (β0 βm πΌ) β§ (β‘πΉ β β) β Fin)) |
6 | nn0ex 12478 | . . . 4 β’ β0 β V | |
7 | elmapg 8833 | . . . 4 β’ ((β0 β V β§ πΌ β π) β (πΉ β (β0 βm πΌ) β πΉ:πΌβΆβ0)) | |
8 | 6, 7 | mpan 689 | . . 3 β’ (πΌ β π β (πΉ β (β0 βm πΌ) β πΉ:πΌβΆβ0)) |
9 | 8 | anbi1d 631 | . 2 β’ (πΌ β π β ((πΉ β (β0 βm πΌ) β§ (β‘πΉ β β) β Fin) β (πΉ:πΌβΆβ0 β§ (β‘πΉ β β) β Fin))) |
10 | 5, 9 | bitrid 283 | 1 β’ (πΌ β π β (πΉ β π· β (πΉ:πΌβΆβ0 β§ (β‘πΉ β β) β Fin))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 {crab 3433 Vcvv 3475 β‘ccnv 5676 β cima 5680 βΆwf 6540 (class class class)co 7409 βm cmap 8820 Fincfn 8939 βcn 12212 β0cn0 12472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-1cn 11168 ax-addcl 11170 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-map 8822 df-nn 12213 df-n0 12473 |
This theorem is referenced by: psrbagfOLD 21472 psrbagfsupp 21473 psrbagfsuppOLD 21474 snifpsrbag 21475 psrbaglecl 21479 psrbagleclOLD 21480 psrbagaddcl 21481 psrbagaddclOLD 21482 psrbagcon 21483 psrbagconOLD 21484 psrbaglefiOLD 21486 mplcoe5lem 21594 mplcoe5 21595 mplbas2 21597 psrbag0 21623 psrbagsn 21624 evlslem3 21643 mhpmulcl 21692 psrbagres 41115 evlselvlem 41158 evlselv 41159 |
Copyright terms: Public domain | W3C validator |