MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0hashbc Structured version   Visualization version   GIF version

Theorem 0hashbc 16342
Description: There are no subsets of the empty set with size greater than zero. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
0hashbc (𝑁 ∈ ℕ → (∅𝐶𝑁) = ∅)
Distinct variable groups:   𝑎,𝑏,𝑖   𝑁,𝑎,𝑖
Allowed substitution hints:   𝐶(𝑖,𝑎,𝑏)   𝑁(𝑏)

Proof of Theorem 0hashbc
StepHypRef Expression
1 0fin 8745 . . . 4 ∅ ∈ Fin
2 nnnn0 11903 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 ramval.c . . . . 5 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
43hashbc2 16341 . . . 4 ((∅ ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘(∅𝐶𝑁)) = ((♯‘∅)C𝑁))
51, 2, 4sylancr 589 . . 3 (𝑁 ∈ ℕ → (♯‘(∅𝐶𝑁)) = ((♯‘∅)C𝑁))
6 hash0 13727 . . . . 5 (♯‘∅) = 0
76oveq1i 7165 . . . 4 ((♯‘∅)C𝑁) = (0C𝑁)
8 bc0k 13670 . . . 4 (𝑁 ∈ ℕ → (0C𝑁) = 0)
97, 8syl5eq 2868 . . 3 (𝑁 ∈ ℕ → ((♯‘∅)C𝑁) = 0)
105, 9eqtrd 2856 . 2 (𝑁 ∈ ℕ → (♯‘(∅𝐶𝑁)) = 0)
11 ovex 7188 . . 3 (∅𝐶𝑁) ∈ V
12 hasheq0 13723 . . 3 ((∅𝐶𝑁) ∈ V → ((♯‘(∅𝐶𝑁)) = 0 ↔ (∅𝐶𝑁) = ∅))
1311, 12ax-mp 5 . 2 ((♯‘(∅𝐶𝑁)) = 0 ↔ (∅𝐶𝑁) = ∅)
1410, 13sylib 220 1 (𝑁 ∈ ℕ → (∅𝐶𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  c0 4290  𝒫 cpw 4538  cfv 6354  (class class class)co 7155  cmpo 7157  Fincfn 8508  0cc0 10536  cn 11637  0cn0 11896  Ccbc 13661  chash 13689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-dju 9329  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-seq 13369  df-fac 13633  df-bc 13662  df-hash 13690
This theorem is referenced by:  ramz2  16359
  Copyright terms: Public domain W3C validator