MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0hashbc Structured version   Visualization version   GIF version

Theorem 0hashbc 16983
Description: There are no subsets of the empty set with size greater than zero. (Contributed by Mario Carneiro, 22-Apr-2015.)
Hypothesis
Ref Expression
ramval.c 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
Assertion
Ref Expression
0hashbc (𝑁 ∈ ℕ → (∅𝐶𝑁) = ∅)
Distinct variable groups:   𝑎,𝑏,𝑖   𝑁,𝑎,𝑖
Allowed substitution hints:   𝐶(𝑖,𝑎,𝑏)   𝑁(𝑏)

Proof of Theorem 0hashbc
StepHypRef Expression
1 0fin 9202 . . . 4 ∅ ∈ Fin
2 nnnn0 12517 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 ramval.c . . . . 5 𝐶 = (𝑎 ∈ V, 𝑖 ∈ ℕ0 ↦ {𝑏 ∈ 𝒫 𝑎 ∣ (♯‘𝑏) = 𝑖})
43hashbc2 16982 . . . 4 ((∅ ∈ Fin ∧ 𝑁 ∈ ℕ0) → (♯‘(∅𝐶𝑁)) = ((♯‘∅)C𝑁))
51, 2, 4sylancr 585 . . 3 (𝑁 ∈ ℕ → (♯‘(∅𝐶𝑁)) = ((♯‘∅)C𝑁))
6 hash0 14366 . . . . 5 (♯‘∅) = 0
76oveq1i 7436 . . . 4 ((♯‘∅)C𝑁) = (0C𝑁)
8 bc0k 14310 . . . 4 (𝑁 ∈ ℕ → (0C𝑁) = 0)
97, 8eqtrid 2780 . . 3 (𝑁 ∈ ℕ → ((♯‘∅)C𝑁) = 0)
105, 9eqtrd 2768 . 2 (𝑁 ∈ ℕ → (♯‘(∅𝐶𝑁)) = 0)
11 ovex 7459 . . 3 (∅𝐶𝑁) ∈ V
12 hasheq0 14362 . . 3 ((∅𝐶𝑁) ∈ V → ((♯‘(∅𝐶𝑁)) = 0 ↔ (∅𝐶𝑁) = ∅))
1311, 12ax-mp 5 . 2 ((♯‘(∅𝐶𝑁)) = 0 ↔ (∅𝐶𝑁) = ∅)
1410, 13sylib 217 1 (𝑁 ∈ ℕ → (∅𝐶𝑁) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  {crab 3430  Vcvv 3473  c0 4326  𝒫 cpw 4606  cfv 6553  (class class class)co 7426  cmpo 7428  Fincfn 8970  0cc0 11146  cn 12250  0cn0 12510  Ccbc 14301  chash 14329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-oadd 8497  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-dju 9932  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-fz 13525  df-seq 14007  df-fac 14273  df-bc 14302  df-hash 14330
This theorem is referenced by:  ramz2  17000
  Copyright terms: Public domain W3C validator