![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > readdcnnred | Structured version Visualization version GIF version |
Description: The sum of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023.) |
Ref | Expression |
---|---|
recnaddnred.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
recnaddnred.b | ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) |
Ref | Expression |
---|---|
readdcnnred | ⊢ (𝜑 → (𝐴 + 𝐵) ∉ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recnaddnred.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) | |
2 | 1 | eldifbd 3961 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ ℝ) |
3 | df-nel 3046 | . . 3 ⊢ ((𝐴 + 𝐵) ∉ ℝ ↔ ¬ (𝐴 + 𝐵) ∈ ℝ) | |
4 | recnaddnred.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | 4 | recnd 11247 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
6 | 1 | eldifad 3960 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
7 | 5, 6 | addcld 11238 | . . . . . 6 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
8 | reim0b 15071 | . . . . . 6 ⊢ ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 + 𝐵)) = 0)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐴 + 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 + 𝐵)) = 0)) |
10 | 4 | reim0d 15177 | . . . . . . . . 9 ⊢ (𝜑 → (ℑ‘𝐴) = 0) |
11 | 10 | oveq1d 7427 | . . . . . . . 8 ⊢ (𝜑 → ((ℑ‘𝐴) + (ℑ‘𝐵)) = (0 + (ℑ‘𝐵))) |
12 | 6 | imcld 15147 | . . . . . . . . . 10 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℝ) |
13 | 12 | recnd 11247 | . . . . . . . . 9 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℂ) |
14 | 13 | addlidd 11420 | . . . . . . . 8 ⊢ (𝜑 → (0 + (ℑ‘𝐵)) = (ℑ‘𝐵)) |
15 | 11, 14 | eqtrd 2771 | . . . . . . 7 ⊢ (𝜑 → ((ℑ‘𝐴) + (ℑ‘𝐵)) = (ℑ‘𝐵)) |
16 | 15 | eqeq1d 2733 | . . . . . 6 ⊢ (𝜑 → (((ℑ‘𝐴) + (ℑ‘𝐵)) = 0 ↔ (ℑ‘𝐵) = 0)) |
17 | 5, 6 | imaddd 15167 | . . . . . . 7 ⊢ (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) |
18 | 17 | eqeq1d 2733 | . . . . . 6 ⊢ (𝜑 → ((ℑ‘(𝐴 + 𝐵)) = 0 ↔ ((ℑ‘𝐴) + (ℑ‘𝐵)) = 0)) |
19 | reim0b 15071 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) | |
20 | 6, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) |
21 | 16, 18, 20 | 3bitr4d 311 | . . . . 5 ⊢ (𝜑 → ((ℑ‘(𝐴 + 𝐵)) = 0 ↔ 𝐵 ∈ ℝ)) |
22 | 9, 21 | bitrd 279 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
23 | 22 | notbid 318 | . . 3 ⊢ (𝜑 → (¬ (𝐴 + 𝐵) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
24 | 3, 23 | bitrid 283 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
25 | 2, 24 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∉ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ∉ wnel 3045 ∖ cdif 3945 ‘cfv 6543 (class class class)co 7412 ℂcc 11112 ℝcr 11113 0cc0 11114 + caddc 11117 ℑcim 15050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-2 12280 df-cj 15051 df-re 15052 df-im 15053 |
This theorem is referenced by: requad01 46588 |
Copyright terms: Public domain | W3C validator |