Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > readdcnnred | Structured version Visualization version GIF version |
Description: The sum of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023.) |
Ref | Expression |
---|---|
recnaddnred.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
recnaddnred.b | ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) |
Ref | Expression |
---|---|
readdcnnred | ⊢ (𝜑 → (𝐴 + 𝐵) ∉ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recnaddnred.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) | |
2 | 1 | eldifbd 3896 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ ℝ) |
3 | df-nel 3049 | . . 3 ⊢ ((𝐴 + 𝐵) ∉ ℝ ↔ ¬ (𝐴 + 𝐵) ∈ ℝ) | |
4 | recnaddnred.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | 4 | recnd 10934 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
6 | 1 | eldifad 3895 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
7 | 5, 6 | addcld 10925 | . . . . . 6 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
8 | reim0b 14758 | . . . . . 6 ⊢ ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 + 𝐵)) = 0)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐴 + 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 + 𝐵)) = 0)) |
10 | 4 | reim0d 14864 | . . . . . . . . 9 ⊢ (𝜑 → (ℑ‘𝐴) = 0) |
11 | 10 | oveq1d 7270 | . . . . . . . 8 ⊢ (𝜑 → ((ℑ‘𝐴) + (ℑ‘𝐵)) = (0 + (ℑ‘𝐵))) |
12 | 6 | imcld 14834 | . . . . . . . . . 10 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℝ) |
13 | 12 | recnd 10934 | . . . . . . . . 9 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℂ) |
14 | 13 | addid2d 11106 | . . . . . . . 8 ⊢ (𝜑 → (0 + (ℑ‘𝐵)) = (ℑ‘𝐵)) |
15 | 11, 14 | eqtrd 2778 | . . . . . . 7 ⊢ (𝜑 → ((ℑ‘𝐴) + (ℑ‘𝐵)) = (ℑ‘𝐵)) |
16 | 15 | eqeq1d 2740 | . . . . . 6 ⊢ (𝜑 → (((ℑ‘𝐴) + (ℑ‘𝐵)) = 0 ↔ (ℑ‘𝐵) = 0)) |
17 | 5, 6 | imaddd 14854 | . . . . . . 7 ⊢ (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) |
18 | 17 | eqeq1d 2740 | . . . . . 6 ⊢ (𝜑 → ((ℑ‘(𝐴 + 𝐵)) = 0 ↔ ((ℑ‘𝐴) + (ℑ‘𝐵)) = 0)) |
19 | reim0b 14758 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) | |
20 | 6, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) |
21 | 16, 18, 20 | 3bitr4d 310 | . . . . 5 ⊢ (𝜑 → ((ℑ‘(𝐴 + 𝐵)) = 0 ↔ 𝐵 ∈ ℝ)) |
22 | 9, 21 | bitrd 278 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
23 | 22 | notbid 317 | . . 3 ⊢ (𝜑 → (¬ (𝐴 + 𝐵) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
24 | 3, 23 | syl5bb 282 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
25 | 2, 24 | mpbird 256 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∉ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 ∖ cdif 3880 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 + caddc 10805 ℑcim 14737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-cj 14738 df-re 14739 df-im 14740 |
This theorem is referenced by: requad01 44961 |
Copyright terms: Public domain | W3C validator |