![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > readdcnnred | Structured version Visualization version GIF version |
Description: The sum of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023.) |
Ref | Expression |
---|---|
recnaddnred.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
recnaddnred.b | ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) |
Ref | Expression |
---|---|
readdcnnred | ⊢ (𝜑 → (𝐴 + 𝐵) ∉ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recnaddnred.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) | |
2 | 1 | eldifbd 3975 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ ℝ) |
3 | df-nel 3044 | . . 3 ⊢ ((𝐴 + 𝐵) ∉ ℝ ↔ ¬ (𝐴 + 𝐵) ∈ ℝ) | |
4 | recnaddnred.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | 4 | recnd 11286 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
6 | 1 | eldifad 3974 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
7 | 5, 6 | addcld 11277 | . . . . . 6 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
8 | reim0b 15154 | . . . . . 6 ⊢ ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 + 𝐵)) = 0)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐴 + 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 + 𝐵)) = 0)) |
10 | 4 | reim0d 15260 | . . . . . . . . 9 ⊢ (𝜑 → (ℑ‘𝐴) = 0) |
11 | 10 | oveq1d 7445 | . . . . . . . 8 ⊢ (𝜑 → ((ℑ‘𝐴) + (ℑ‘𝐵)) = (0 + (ℑ‘𝐵))) |
12 | 6 | imcld 15230 | . . . . . . . . . 10 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℝ) |
13 | 12 | recnd 11286 | . . . . . . . . 9 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℂ) |
14 | 13 | addlidd 11459 | . . . . . . . 8 ⊢ (𝜑 → (0 + (ℑ‘𝐵)) = (ℑ‘𝐵)) |
15 | 11, 14 | eqtrd 2774 | . . . . . . 7 ⊢ (𝜑 → ((ℑ‘𝐴) + (ℑ‘𝐵)) = (ℑ‘𝐵)) |
16 | 15 | eqeq1d 2736 | . . . . . 6 ⊢ (𝜑 → (((ℑ‘𝐴) + (ℑ‘𝐵)) = 0 ↔ (ℑ‘𝐵) = 0)) |
17 | 5, 6 | imaddd 15250 | . . . . . . 7 ⊢ (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵))) |
18 | 17 | eqeq1d 2736 | . . . . . 6 ⊢ (𝜑 → ((ℑ‘(𝐴 + 𝐵)) = 0 ↔ ((ℑ‘𝐴) + (ℑ‘𝐵)) = 0)) |
19 | reim0b 15154 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) | |
20 | 6, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) |
21 | 16, 18, 20 | 3bitr4d 311 | . . . . 5 ⊢ (𝜑 → ((ℑ‘(𝐴 + 𝐵)) = 0 ↔ 𝐵 ∈ ℝ)) |
22 | 9, 21 | bitrd 279 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
23 | 22 | notbid 318 | . . 3 ⊢ (𝜑 → (¬ (𝐴 + 𝐵) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
24 | 3, 23 | bitrid 283 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
25 | 2, 24 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ∉ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1536 ∈ wcel 2105 ∉ wnel 3043 ∖ cdif 3959 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 ℝcr 11151 0cc0 11152 + caddc 11155 ℑcim 15133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-2 12326 df-cj 15134 df-re 15135 df-im 15136 |
This theorem is referenced by: requad01 47545 |
Copyright terms: Public domain | W3C validator |