Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readdcnnred Structured version   Visualization version   GIF version

Theorem readdcnnred 44795
Description: The sum of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
recnaddnred.a (𝜑𝐴 ∈ ℝ)
recnaddnred.b (𝜑𝐵 ∈ (ℂ ∖ ℝ))
Assertion
Ref Expression
readdcnnred (𝜑 → (𝐴 + 𝐵) ∉ ℝ)

Proof of Theorem readdcnnred
StepHypRef Expression
1 recnaddnred.b . . 3 (𝜑𝐵 ∈ (ℂ ∖ ℝ))
21eldifbd 3900 . 2 (𝜑 → ¬ 𝐵 ∈ ℝ)
3 df-nel 3050 . . 3 ((𝐴 + 𝐵) ∉ ℝ ↔ ¬ (𝐴 + 𝐵) ∈ ℝ)
4 recnaddnred.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
54recnd 11003 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
61eldifad 3899 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
75, 6addcld 10994 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
8 reim0b 14830 . . . . . 6 ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 + 𝐵)) = 0))
97, 8syl 17 . . . . 5 (𝜑 → ((𝐴 + 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 + 𝐵)) = 0))
104reim0d 14936 . . . . . . . . 9 (𝜑 → (ℑ‘𝐴) = 0)
1110oveq1d 7290 . . . . . . . 8 (𝜑 → ((ℑ‘𝐴) + (ℑ‘𝐵)) = (0 + (ℑ‘𝐵)))
126imcld 14906 . . . . . . . . . 10 (𝜑 → (ℑ‘𝐵) ∈ ℝ)
1312recnd 11003 . . . . . . . . 9 (𝜑 → (ℑ‘𝐵) ∈ ℂ)
1413addid2d 11176 . . . . . . . 8 (𝜑 → (0 + (ℑ‘𝐵)) = (ℑ‘𝐵))
1511, 14eqtrd 2778 . . . . . . 7 (𝜑 → ((ℑ‘𝐴) + (ℑ‘𝐵)) = (ℑ‘𝐵))
1615eqeq1d 2740 . . . . . 6 (𝜑 → (((ℑ‘𝐴) + (ℑ‘𝐵)) = 0 ↔ (ℑ‘𝐵) = 0))
175, 6imaddd 14926 . . . . . . 7 (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
1817eqeq1d 2740 . . . . . 6 (𝜑 → ((ℑ‘(𝐴 + 𝐵)) = 0 ↔ ((ℑ‘𝐴) + (ℑ‘𝐵)) = 0))
19 reim0b 14830 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0))
206, 19syl 17 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0))
2116, 18, 203bitr4d 311 . . . . 5 (𝜑 → ((ℑ‘(𝐴 + 𝐵)) = 0 ↔ 𝐵 ∈ ℝ))
229, 21bitrd 278 . . . 4 (𝜑 → ((𝐴 + 𝐵) ∈ ℝ ↔ 𝐵 ∈ ℝ))
2322notbid 318 . . 3 (𝜑 → (¬ (𝐴 + 𝐵) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ))
243, 23syl5bb 283 . 2 (𝜑 → ((𝐴 + 𝐵) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ))
252, 24mpbird 256 1 (𝜑 → (𝐴 + 𝐵) ∉ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2106  wnel 3049  cdif 3884  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   + caddc 10874  cim 14809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-cj 14810  df-re 14811  df-im 14812
This theorem is referenced by:  requad01  45073
  Copyright terms: Public domain W3C validator