Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  readdcnnred Structured version   Visualization version   GIF version

Theorem readdcnnred 47427
Description: The sum of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
recnaddnred.a (𝜑𝐴 ∈ ℝ)
recnaddnred.b (𝜑𝐵 ∈ (ℂ ∖ ℝ))
Assertion
Ref Expression
readdcnnred (𝜑 → (𝐴 + 𝐵) ∉ ℝ)

Proof of Theorem readdcnnred
StepHypRef Expression
1 recnaddnred.b . . 3 (𝜑𝐵 ∈ (ℂ ∖ ℝ))
21eldifbd 3911 . 2 (𝜑 → ¬ 𝐵 ∈ ℝ)
3 df-nel 3034 . . 3 ((𝐴 + 𝐵) ∉ ℝ ↔ ¬ (𝐴 + 𝐵) ∈ ℝ)
4 recnaddnred.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
54recnd 11147 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
61eldifad 3910 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
75, 6addcld 11138 . . . . . 6 (𝜑 → (𝐴 + 𝐵) ∈ ℂ)
8 reim0b 15028 . . . . . 6 ((𝐴 + 𝐵) ∈ ℂ → ((𝐴 + 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 + 𝐵)) = 0))
97, 8syl 17 . . . . 5 (𝜑 → ((𝐴 + 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 + 𝐵)) = 0))
104reim0d 15134 . . . . . . . . 9 (𝜑 → (ℑ‘𝐴) = 0)
1110oveq1d 7367 . . . . . . . 8 (𝜑 → ((ℑ‘𝐴) + (ℑ‘𝐵)) = (0 + (ℑ‘𝐵)))
126imcld 15104 . . . . . . . . . 10 (𝜑 → (ℑ‘𝐵) ∈ ℝ)
1312recnd 11147 . . . . . . . . 9 (𝜑 → (ℑ‘𝐵) ∈ ℂ)
1413addlidd 11321 . . . . . . . 8 (𝜑 → (0 + (ℑ‘𝐵)) = (ℑ‘𝐵))
1511, 14eqtrd 2768 . . . . . . 7 (𝜑 → ((ℑ‘𝐴) + (ℑ‘𝐵)) = (ℑ‘𝐵))
1615eqeq1d 2735 . . . . . 6 (𝜑 → (((ℑ‘𝐴) + (ℑ‘𝐵)) = 0 ↔ (ℑ‘𝐵) = 0))
175, 6imaddd 15124 . . . . . . 7 (𝜑 → (ℑ‘(𝐴 + 𝐵)) = ((ℑ‘𝐴) + (ℑ‘𝐵)))
1817eqeq1d 2735 . . . . . 6 (𝜑 → ((ℑ‘(𝐴 + 𝐵)) = 0 ↔ ((ℑ‘𝐴) + (ℑ‘𝐵)) = 0))
19 reim0b 15028 . . . . . . 7 (𝐵 ∈ ℂ → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0))
206, 19syl 17 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0))
2116, 18, 203bitr4d 311 . . . . 5 (𝜑 → ((ℑ‘(𝐴 + 𝐵)) = 0 ↔ 𝐵 ∈ ℝ))
229, 21bitrd 279 . . . 4 (𝜑 → ((𝐴 + 𝐵) ∈ ℝ ↔ 𝐵 ∈ ℝ))
2322notbid 318 . . 3 (𝜑 → (¬ (𝐴 + 𝐵) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ))
243, 23bitrid 283 . 2 (𝜑 → ((𝐴 + 𝐵) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ))
252, 24mpbird 257 1 (𝜑 → (𝐴 + 𝐵) ∉ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2113  wnel 3033  cdif 3895  cfv 6486  (class class class)co 7352  cc 11011  cr 11012  0cc0 11013   + caddc 11016  cim 15007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-cj 15008  df-re 15009  df-im 15010
This theorem is referenced by:  requad01  47745
  Copyright terms: Public domain W3C validator