![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubcnnred | Structured version Visualization version GIF version |
Description: The difference of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023.) |
Ref | Expression |
---|---|
recnaddnred.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
recnaddnred.b | ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) |
Ref | Expression |
---|---|
resubcnnred | ⊢ (𝜑 → (𝐴 − 𝐵) ∉ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recnaddnred.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) | |
2 | 1 | eldifbd 3843 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ ℝ) |
3 | df-nel 3075 | . . 3 ⊢ ((𝐴 − 𝐵) ∉ ℝ ↔ ¬ (𝐴 − 𝐵) ∈ ℝ) | |
4 | recnaddnred.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | 4 | recnd 10468 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
6 | 1 | eldifad 3842 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
7 | 5, 6 | subcld 10798 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
8 | reim0b 14339 | . . . . . 6 ⊢ ((𝐴 − 𝐵) ∈ ℂ → ((𝐴 − 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 − 𝐵)) = 0)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 − 𝐵)) = 0)) |
10 | 4 | reim0d 14445 | . . . . . . . . 9 ⊢ (𝜑 → (ℑ‘𝐴) = 0) |
11 | 10 | oveq1d 6991 | . . . . . . . 8 ⊢ (𝜑 → ((ℑ‘𝐴) − (ℑ‘𝐵)) = (0 − (ℑ‘𝐵))) |
12 | df-neg 10673 | . . . . . . . 8 ⊢ -(ℑ‘𝐵) = (0 − (ℑ‘𝐵)) | |
13 | 11, 12 | syl6eqr 2833 | . . . . . . 7 ⊢ (𝜑 → ((ℑ‘𝐴) − (ℑ‘𝐵)) = -(ℑ‘𝐵)) |
14 | 13 | eqeq1d 2781 | . . . . . 6 ⊢ (𝜑 → (((ℑ‘𝐴) − (ℑ‘𝐵)) = 0 ↔ -(ℑ‘𝐵) = 0)) |
15 | 5, 6 | imsubd 14437 | . . . . . . 7 ⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) |
16 | 15 | eqeq1d 2781 | . . . . . 6 ⊢ (𝜑 → ((ℑ‘(𝐴 − 𝐵)) = 0 ↔ ((ℑ‘𝐴) − (ℑ‘𝐵)) = 0)) |
17 | reim0b 14339 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) | |
18 | 6, 17 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) |
19 | 6 | imcld 14415 | . . . . . . . . 9 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℝ) |
20 | 19 | recnd 10468 | . . . . . . . 8 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℂ) |
21 | 20 | negeq0d 10790 | . . . . . . 7 ⊢ (𝜑 → ((ℑ‘𝐵) = 0 ↔ -(ℑ‘𝐵) = 0)) |
22 | 18, 21 | bitrd 271 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ -(ℑ‘𝐵) = 0)) |
23 | 14, 16, 22 | 3bitr4d 303 | . . . . 5 ⊢ (𝜑 → ((ℑ‘(𝐴 − 𝐵)) = 0 ↔ 𝐵 ∈ ℝ)) |
24 | 9, 23 | bitrd 271 | . . . 4 ⊢ (𝜑 → ((𝐴 − 𝐵) ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
25 | 24 | notbid 310 | . . 3 ⊢ (𝜑 → (¬ (𝐴 − 𝐵) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
26 | 3, 25 | syl5bb 275 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
27 | 2, 26 | mpbird 249 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∉ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 = wceq 1507 ∈ wcel 2050 ∉ wnel 3074 ∖ cdif 3827 ‘cfv 6188 (class class class)co 6976 ℂcc 10333 ℝcr 10334 0cc0 10335 − cmin 10670 -cneg 10671 ℑcim 14318 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-po 5326 df-so 5327 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-2 11503 df-cj 14319 df-re 14320 df-im 14321 |
This theorem is referenced by: requad01 43152 |
Copyright terms: Public domain | W3C validator |