Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubcnnred Structured version   Visualization version   GIF version

Theorem resubcnnred 47309
Description: The difference of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023.)
Hypotheses
Ref Expression
recnaddnred.a (𝜑𝐴 ∈ ℝ)
recnaddnred.b (𝜑𝐵 ∈ (ℂ ∖ ℝ))
Assertion
Ref Expression
resubcnnred (𝜑 → (𝐴𝐵) ∉ ℝ)

Proof of Theorem resubcnnred
StepHypRef Expression
1 recnaddnred.b . . 3 (𝜑𝐵 ∈ (ℂ ∖ ℝ))
21eldifbd 3930 . 2 (𝜑 → ¬ 𝐵 ∈ ℝ)
3 df-nel 3031 . . 3 ((𝐴𝐵) ∉ ℝ ↔ ¬ (𝐴𝐵) ∈ ℝ)
4 recnaddnred.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
54recnd 11209 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
61eldifad 3929 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
75, 6subcld 11540 . . . . . 6 (𝜑 → (𝐴𝐵) ∈ ℂ)
8 reim0b 15092 . . . . . 6 ((𝐴𝐵) ∈ ℂ → ((𝐴𝐵) ∈ ℝ ↔ (ℑ‘(𝐴𝐵)) = 0))
97, 8syl 17 . . . . 5 (𝜑 → ((𝐴𝐵) ∈ ℝ ↔ (ℑ‘(𝐴𝐵)) = 0))
104reim0d 15198 . . . . . . . . 9 (𝜑 → (ℑ‘𝐴) = 0)
1110oveq1d 7405 . . . . . . . 8 (𝜑 → ((ℑ‘𝐴) − (ℑ‘𝐵)) = (0 − (ℑ‘𝐵)))
12 df-neg 11415 . . . . . . . 8 -(ℑ‘𝐵) = (0 − (ℑ‘𝐵))
1311, 12eqtr4di 2783 . . . . . . 7 (𝜑 → ((ℑ‘𝐴) − (ℑ‘𝐵)) = -(ℑ‘𝐵))
1413eqeq1d 2732 . . . . . 6 (𝜑 → (((ℑ‘𝐴) − (ℑ‘𝐵)) = 0 ↔ -(ℑ‘𝐵) = 0))
155, 6imsubd 15190 . . . . . . 7 (𝜑 → (ℑ‘(𝐴𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵)))
1615eqeq1d 2732 . . . . . 6 (𝜑 → ((ℑ‘(𝐴𝐵)) = 0 ↔ ((ℑ‘𝐴) − (ℑ‘𝐵)) = 0))
17 reim0b 15092 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0))
186, 17syl 17 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0))
196imcld 15168 . . . . . . . . 9 (𝜑 → (ℑ‘𝐵) ∈ ℝ)
2019recnd 11209 . . . . . . . 8 (𝜑 → (ℑ‘𝐵) ∈ ℂ)
2120negeq0d 11532 . . . . . . 7 (𝜑 → ((ℑ‘𝐵) = 0 ↔ -(ℑ‘𝐵) = 0))
2218, 21bitrd 279 . . . . . 6 (𝜑 → (𝐵 ∈ ℝ ↔ -(ℑ‘𝐵) = 0))
2314, 16, 223bitr4d 311 . . . . 5 (𝜑 → ((ℑ‘(𝐴𝐵)) = 0 ↔ 𝐵 ∈ ℝ))
249, 23bitrd 279 . . . 4 (𝜑 → ((𝐴𝐵) ∈ ℝ ↔ 𝐵 ∈ ℝ))
2524notbid 318 . . 3 (𝜑 → (¬ (𝐴𝐵) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ))
263, 25bitrid 283 . 2 (𝜑 → ((𝐴𝐵) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ))
272, 26mpbird 257 1 (𝜑 → (𝐴𝐵) ∉ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wnel 3030  cdif 3914  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  cmin 11412  -cneg 11413  cim 15071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-cj 15072  df-re 15073  df-im 15074
This theorem is referenced by:  requad01  47626
  Copyright terms: Public domain W3C validator