![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resubcnnred | Structured version Visualization version GIF version |
Description: The difference of a real number and an imaginary number is not a real number. (Contributed by AV, 23-Jan-2023.) |
Ref | Expression |
---|---|
recnaddnred.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
recnaddnred.b | ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) |
Ref | Expression |
---|---|
resubcnnred | ⊢ (𝜑 → (𝐴 − 𝐵) ∉ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recnaddnred.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (ℂ ∖ ℝ)) | |
2 | 1 | eldifbd 3989 | . 2 ⊢ (𝜑 → ¬ 𝐵 ∈ ℝ) |
3 | df-nel 3053 | . . 3 ⊢ ((𝐴 − 𝐵) ∉ ℝ ↔ ¬ (𝐴 − 𝐵) ∈ ℝ) | |
4 | recnaddnred.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
5 | 4 | recnd 11318 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
6 | 1 | eldifad 3988 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
7 | 5, 6 | subcld 11647 | . . . . . 6 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
8 | reim0b 15168 | . . . . . 6 ⊢ ((𝐴 − 𝐵) ∈ ℂ → ((𝐴 − 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 − 𝐵)) = 0)) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 𝐵) ∈ ℝ ↔ (ℑ‘(𝐴 − 𝐵)) = 0)) |
10 | 4 | reim0d 15274 | . . . . . . . . 9 ⊢ (𝜑 → (ℑ‘𝐴) = 0) |
11 | 10 | oveq1d 7463 | . . . . . . . 8 ⊢ (𝜑 → ((ℑ‘𝐴) − (ℑ‘𝐵)) = (0 − (ℑ‘𝐵))) |
12 | df-neg 11523 | . . . . . . . 8 ⊢ -(ℑ‘𝐵) = (0 − (ℑ‘𝐵)) | |
13 | 11, 12 | eqtr4di 2798 | . . . . . . 7 ⊢ (𝜑 → ((ℑ‘𝐴) − (ℑ‘𝐵)) = -(ℑ‘𝐵)) |
14 | 13 | eqeq1d 2742 | . . . . . 6 ⊢ (𝜑 → (((ℑ‘𝐴) − (ℑ‘𝐵)) = 0 ↔ -(ℑ‘𝐵) = 0)) |
15 | 5, 6 | imsubd 15266 | . . . . . . 7 ⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) |
16 | 15 | eqeq1d 2742 | . . . . . 6 ⊢ (𝜑 → ((ℑ‘(𝐴 − 𝐵)) = 0 ↔ ((ℑ‘𝐴) − (ℑ‘𝐵)) = 0)) |
17 | reim0b 15168 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) | |
18 | 6, 17 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ (ℑ‘𝐵) = 0)) |
19 | 6 | imcld 15244 | . . . . . . . . 9 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℝ) |
20 | 19 | recnd 11318 | . . . . . . . 8 ⊢ (𝜑 → (ℑ‘𝐵) ∈ ℂ) |
21 | 20 | negeq0d 11639 | . . . . . . 7 ⊢ (𝜑 → ((ℑ‘𝐵) = 0 ↔ -(ℑ‘𝐵) = 0)) |
22 | 18, 21 | bitrd 279 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ℝ ↔ -(ℑ‘𝐵) = 0)) |
23 | 14, 16, 22 | 3bitr4d 311 | . . . . 5 ⊢ (𝜑 → ((ℑ‘(𝐴 − 𝐵)) = 0 ↔ 𝐵 ∈ ℝ)) |
24 | 9, 23 | bitrd 279 | . . . 4 ⊢ (𝜑 → ((𝐴 − 𝐵) ∈ ℝ ↔ 𝐵 ∈ ℝ)) |
25 | 24 | notbid 318 | . . 3 ⊢ (𝜑 → (¬ (𝐴 − 𝐵) ∈ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
26 | 3, 25 | bitrid 283 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) ∉ ℝ ↔ ¬ 𝐵 ∈ ℝ)) |
27 | 2, 26 | mpbird 257 | 1 ⊢ (𝜑 → (𝐴 − 𝐵) ∉ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 ∖ cdif 3973 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 − cmin 11520 -cneg 11521 ℑcim 15147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-cj 15148 df-re 15149 df-im 15150 |
This theorem is referenced by: requad01 47495 |
Copyright terms: Public domain | W3C validator |