Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcand Structured version   Visualization version   GIF version

Theorem mulcand 11265
 Description: Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulcand.1 (𝜑𝐴 ∈ ℂ)
mulcand.2 (𝜑𝐵 ∈ ℂ)
mulcand.3 (𝜑𝐶 ∈ ℂ)
mulcand.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
mulcand (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem mulcand
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mulcand.3 . . . 4 (𝜑𝐶 ∈ ℂ)
2 mulcand.4 . . . 4 (𝜑𝐶 ≠ 0)
3 recex 11264 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1)
41, 2, 3syl2anc 587 . . 3 (𝜑 → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1)
5 oveq2 7144 . . . 4 ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
6 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝑥 ∈ ℂ)
71adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐶 ∈ ℂ)
86, 7mulcomd 10654 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = (𝐶 · 𝑥))
9 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝐶 · 𝑥) = 1)
108, 9eqtrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = 1)
1110oveq1d 7151 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴))
12 mulcand.1 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1312adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐴 ∈ ℂ)
146, 7, 13mulassd 10656 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴)))
1513mulid2d 10651 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐴) = 𝐴)
1611, 14, 153eqtr3d 2841 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴)
1710oveq1d 7151 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵))
18 mulcand.2 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1918adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐵 ∈ ℂ)
206, 7, 19mulassd 10656 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵)))
2119mulid2d 10651 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐵) = 𝐵)
2217, 20, 213eqtr3d 2841 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵)
2316, 22eqeq12d 2814 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)) ↔ 𝐴 = 𝐵))
245, 23syl5ib 247 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
254, 24rexlimddv 3250 . 2 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
26 oveq2 7144 . 2 (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵))
2725, 26impbid1 228 1 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∃wrex 3107  (class class class)co 7136  ℂcc 10527  0cc0 10529  1c1 10530   · cmul 10534 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-po 5439  df-so 5440  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865 This theorem is referenced by:  mulcan2d  11266  mulcanad  11267  mulcan  11269  div11  11318  eqneg  11352  qredeq  15994  cncongr1  16004  prmirredlem  20191  tanarg  25220  quad2  25435  atandm2  25473  lgseisenlem2  25970  frrusgrord0  28135  fpprwppr  44300  affinecomb2  45158  rrx2linest  45197  itscnhlc0yqe  45214  itsclquadeu  45232
 Copyright terms: Public domain W3C validator