MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcand Structured version   Visualization version   GIF version

Theorem mulcand 11847
Description: Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulcand.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
mulcand.2 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
mulcand.3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
mulcand.4 (๐œ‘ โ†’ ๐ถ โ‰  0)
Assertion
Ref Expression
mulcand (๐œ‘ โ†’ ((๐ถ ยท ๐ด) = (๐ถ ยท ๐ต) โ†” ๐ด = ๐ต))

Proof of Theorem mulcand
Dummy variable ๐‘ฅ is distinct from all other variables.
StepHypRef Expression
1 mulcand.3 . . . 4 (๐œ‘ โ†’ ๐ถ โˆˆ โ„‚)
2 mulcand.4 . . . 4 (๐œ‘ โ†’ ๐ถ โ‰  0)
3 recex 11846 . . . 4 ((๐ถ โˆˆ โ„‚ โˆง ๐ถ โ‰  0) โ†’ โˆƒ๐‘ฅ โˆˆ โ„‚ (๐ถ ยท ๐‘ฅ) = 1)
41, 2, 3syl2anc 585 . . 3 (๐œ‘ โ†’ โˆƒ๐‘ฅ โˆˆ โ„‚ (๐ถ ยท ๐‘ฅ) = 1)
5 oveq2 7417 . . . 4 ((๐ถ ยท ๐ด) = (๐ถ ยท ๐ต) โ†’ (๐‘ฅ ยท (๐ถ ยท ๐ด)) = (๐‘ฅ ยท (๐ถ ยท ๐ต)))
6 simprl 770 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ ๐‘ฅ โˆˆ โ„‚)
71adantr 482 . . . . . . . . 9 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ ๐ถ โˆˆ โ„‚)
86, 7mulcomd 11235 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ (๐‘ฅ ยท ๐ถ) = (๐ถ ยท ๐‘ฅ))
9 simprr 772 . . . . . . . 8 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ (๐ถ ยท ๐‘ฅ) = 1)
108, 9eqtrd 2773 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ (๐‘ฅ ยท ๐ถ) = 1)
1110oveq1d 7424 . . . . . 6 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ ((๐‘ฅ ยท ๐ถ) ยท ๐ด) = (1 ยท ๐ด))
12 mulcand.1 . . . . . . . 8 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
1312adantr 482 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ ๐ด โˆˆ โ„‚)
146, 7, 13mulassd 11237 . . . . . 6 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ ((๐‘ฅ ยท ๐ถ) ยท ๐ด) = (๐‘ฅ ยท (๐ถ ยท ๐ด)))
1513mullidd 11232 . . . . . 6 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ (1 ยท ๐ด) = ๐ด)
1611, 14, 153eqtr3d 2781 . . . . 5 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ (๐‘ฅ ยท (๐ถ ยท ๐ด)) = ๐ด)
1710oveq1d 7424 . . . . . 6 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ ((๐‘ฅ ยท ๐ถ) ยท ๐ต) = (1 ยท ๐ต))
18 mulcand.2 . . . . . . . 8 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
1918adantr 482 . . . . . . 7 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ ๐ต โˆˆ โ„‚)
206, 7, 19mulassd 11237 . . . . . 6 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ ((๐‘ฅ ยท ๐ถ) ยท ๐ต) = (๐‘ฅ ยท (๐ถ ยท ๐ต)))
2119mullidd 11232 . . . . . 6 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ (1 ยท ๐ต) = ๐ต)
2217, 20, 213eqtr3d 2781 . . . . 5 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ (๐‘ฅ ยท (๐ถ ยท ๐ต)) = ๐ต)
2316, 22eqeq12d 2749 . . . 4 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ ((๐‘ฅ ยท (๐ถ ยท ๐ด)) = (๐‘ฅ ยท (๐ถ ยท ๐ต)) โ†” ๐ด = ๐ต))
245, 23imbitrid 243 . . 3 ((๐œ‘ โˆง (๐‘ฅ โˆˆ โ„‚ โˆง (๐ถ ยท ๐‘ฅ) = 1)) โ†’ ((๐ถ ยท ๐ด) = (๐ถ ยท ๐ต) โ†’ ๐ด = ๐ต))
254, 24rexlimddv 3162 . 2 (๐œ‘ โ†’ ((๐ถ ยท ๐ด) = (๐ถ ยท ๐ต) โ†’ ๐ด = ๐ต))
26 oveq2 7417 . 2 (๐ด = ๐ต โ†’ (๐ถ ยท ๐ด) = (๐ถ ยท ๐ต))
2725, 26impbid1 224 1 (๐œ‘ โ†’ ((๐ถ ยท ๐ด) = (๐ถ ยท ๐ต) โ†” ๐ด = ๐ต))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107   โ‰  wne 2941  โˆƒwrex 3071  (class class class)co 7409  โ„‚cc 11108  0cc0 11110  1c1 11111   ยท cmul 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447
This theorem is referenced by:  mulcan2d  11848  mulcanad  11849  mulcan  11851  div11  11900  eqneg  11934  qredeq  16594  cncongr1  16604  prmirredlem  21042  tanarg  26127  quad2  26344  atandm2  26382  lgseisenlem2  26879  frrusgrord0  29593  fpprwppr  46407  affinecomb2  47389  rrx2linest  47428  itscnhlc0yqe  47445  itsclquadeu  47463
  Copyright terms: Public domain W3C validator