Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcand | Structured version Visualization version GIF version |
Description: Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulcand.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
mulcand.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
mulcand.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
mulcand.4 | ⊢ (𝜑 → 𝐶 ≠ 0) |
Ref | Expression |
---|---|
mulcand | ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcand.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
2 | mulcand.4 | . . . 4 ⊢ (𝜑 → 𝐶 ≠ 0) | |
3 | recex 11700 | . . . 4 ⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1) | |
4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1) |
5 | oveq2 7337 | . . . 4 ⊢ ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵))) | |
6 | simprl 768 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝑥 ∈ ℂ) | |
7 | 1 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐶 ∈ ℂ) |
8 | 6, 7 | mulcomd 11089 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = (𝐶 · 𝑥)) |
9 | simprr 770 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝐶 · 𝑥) = 1) | |
10 | 8, 9 | eqtrd 2776 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = 1) |
11 | 10 | oveq1d 7344 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴)) |
12 | mulcand.1 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
13 | 12 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐴 ∈ ℂ) |
14 | 6, 7, 13 | mulassd 11091 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴))) |
15 | 13 | mulid2d 11086 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐴) = 𝐴) |
16 | 11, 14, 15 | 3eqtr3d 2784 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴) |
17 | 10 | oveq1d 7344 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵)) |
18 | mulcand.2 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
19 | 18 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐵 ∈ ℂ) |
20 | 6, 7, 19 | mulassd 11091 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵))) |
21 | 19 | mulid2d 11086 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐵) = 𝐵) |
22 | 17, 20, 21 | 3eqtr3d 2784 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵) |
23 | 16, 22 | eqeq12d 2752 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)) ↔ 𝐴 = 𝐵)) |
24 | 5, 23 | syl5ib 243 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)) |
25 | 4, 24 | rexlimddv 3154 | . 2 ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵)) |
26 | oveq2 7337 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵)) | |
27 | 25, 26 | impbid1 224 | 1 ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∃wrex 3070 (class class class)co 7329 ℂcc 10962 0cc0 10964 1c1 10965 · cmul 10969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-po 5526 df-so 5527 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 |
This theorem is referenced by: mulcan2d 11702 mulcanad 11703 mulcan 11705 div11 11754 eqneg 11788 qredeq 16451 cncongr1 16461 prmirredlem 20792 tanarg 25872 quad2 26087 atandm2 26125 lgseisenlem2 26622 frrusgrord0 28933 fpprwppr 45531 affinecomb2 46389 rrx2linest 46428 itscnhlc0yqe 46445 itsclquadeu 46463 |
Copyright terms: Public domain | W3C validator |