MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcand Structured version   Visualization version   GIF version

Theorem mulcand 11923
Description: Cancellation law for multiplication. Theorem I.7 of [Apostol] p. 18. (Contributed by NM, 26-Jan-1995.) (Revised by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
mulcand.1 (𝜑𝐴 ∈ ℂ)
mulcand.2 (𝜑𝐵 ∈ ℂ)
mulcand.3 (𝜑𝐶 ∈ ℂ)
mulcand.4 (𝜑𝐶 ≠ 0)
Assertion
Ref Expression
mulcand (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))

Proof of Theorem mulcand
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mulcand.3 . . . 4 (𝜑𝐶 ∈ ℂ)
2 mulcand.4 . . . 4 (𝜑𝐶 ≠ 0)
3 recex 11922 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1)
41, 2, 3syl2anc 583 . . 3 (𝜑 → ∃𝑥 ∈ ℂ (𝐶 · 𝑥) = 1)
5 oveq2 7456 . . . 4 ((𝐶 · 𝐴) = (𝐶 · 𝐵) → (𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)))
6 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝑥 ∈ ℂ)
71adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐶 ∈ ℂ)
86, 7mulcomd 11311 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = (𝐶 · 𝑥))
9 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝐶 · 𝑥) = 1)
108, 9eqtrd 2780 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · 𝐶) = 1)
1110oveq1d 7463 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (1 · 𝐴))
12 mulcand.1 . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
1312adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐴 ∈ ℂ)
146, 7, 13mulassd 11313 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐴) = (𝑥 · (𝐶 · 𝐴)))
1513mullidd 11308 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐴) = 𝐴)
1611, 14, 153eqtr3d 2788 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐴)) = 𝐴)
1710oveq1d 7463 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (1 · 𝐵))
18 mulcand.2 . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
1918adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → 𝐵 ∈ ℂ)
206, 7, 19mulassd 11313 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · 𝐶) · 𝐵) = (𝑥 · (𝐶 · 𝐵)))
2119mullidd 11308 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (1 · 𝐵) = 𝐵)
2217, 20, 213eqtr3d 2788 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → (𝑥 · (𝐶 · 𝐵)) = 𝐵)
2316, 22eqeq12d 2756 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝑥 · (𝐶 · 𝐴)) = (𝑥 · (𝐶 · 𝐵)) ↔ 𝐴 = 𝐵))
245, 23imbitrid 244 . . 3 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ (𝐶 · 𝑥) = 1)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
254, 24rexlimddv 3167 . 2 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) → 𝐴 = 𝐵))
26 oveq2 7456 . 2 (𝐴 = 𝐵 → (𝐶 · 𝐴) = (𝐶 · 𝐵))
2725, 26impbid1 225 1 (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   · cmul 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  mulcan2d  11924  mulcanad  11925  mulcan  11927  div11OLD  11978  eqneg  12014  qredeq  16704  cncongr1  16714  prmirredlem  21506  tanarg  26679  quad2  26900  atandm2  26938  lgseisenlem2  27438  frrusgrord0  30372  unitscyglem2  42153  fpprwppr  47613  affinecomb2  48437  rrx2linest  48476  itscnhlc0yqe  48493  itsclquadeu  48511
  Copyright terms: Public domain W3C validator