Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > remetdval | Structured version Visualization version GIF version |
Description: Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.) |
Ref | Expression |
---|---|
remet.1 | ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) |
Ref | Expression |
---|---|
remetdval | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7275 | . . 3 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
2 | remet.1 | . . . 4 ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
3 | 2 | fveq1i 6772 | . . 3 ⊢ (𝐷‘〈𝐴, 𝐵〉) = (((abs ∘ − ) ↾ (ℝ × ℝ))‘〈𝐴, 𝐵〉) |
4 | 1, 3 | eqtri 2768 | . 2 ⊢ (𝐴𝐷𝐵) = (((abs ∘ − ) ↾ (ℝ × ℝ))‘〈𝐴, 𝐵〉) |
5 | opelxpi 5627 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 〈𝐴, 𝐵〉 ∈ (ℝ × ℝ)) | |
6 | 5 | fvresd 6791 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ))‘〈𝐴, 𝐵〉) = ((abs ∘ − )‘〈𝐴, 𝐵〉)) |
7 | df-ov 7275 | . . . 4 ⊢ (𝐴(abs ∘ − )𝐵) = ((abs ∘ − )‘〈𝐴, 𝐵〉) | |
8 | recn 10972 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
9 | recn 10972 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
10 | eqid 2740 | . . . . . 6 ⊢ (abs ∘ − ) = (abs ∘ − ) | |
11 | 10 | cnmetdval 23945 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴(abs ∘ − )𝐵) = (abs‘(𝐴 − 𝐵))) |
12 | 8, 9, 11 | syl2an 596 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(abs ∘ − )𝐵) = (abs‘(𝐴 − 𝐵))) |
13 | 7, 12 | eqtr3id 2794 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs ∘ − )‘〈𝐴, 𝐵〉) = (abs‘(𝐴 − 𝐵))) |
14 | 6, 13 | eqtrd 2780 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ))‘〈𝐴, 𝐵〉) = (abs‘(𝐴 − 𝐵))) |
15 | 4, 14 | eqtrid 2792 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 〈cop 4573 × cxp 5588 ↾ cres 5592 ∘ ccom 5594 ‘cfv 6432 (class class class)co 7272 ℂcc 10880 ℝcr 10881 − cmin 11216 abscabs 14956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-1st 7825 df-2nd 7826 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-ltxr 11025 df-sub 11218 |
This theorem is referenced by: bl2ioo 23966 xrsdsre 23984 reconnlem2 24001 rrxdstprj1 24584 dvlip2 25170 nmcvcn 29066 poimirlem29 35815 rrndstprj1 35997 rrndstprj2 35998 rrncmslem 35999 ismrer1 36005 rrnprjdstle 43824 |
Copyright terms: Public domain | W3C validator |