MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remetdval Structured version   Visualization version   GIF version

Theorem remetdval 23394
Description: Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.)
Hypothesis
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
remetdval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))

Proof of Theorem remetdval
StepHypRef Expression
1 df-ov 7138 . . 3 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
2 remet.1 . . . 4 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
32fveq1i 6646 . . 3 (𝐷‘⟨𝐴, 𝐵⟩) = (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩)
41, 3eqtri 2821 . 2 (𝐴𝐷𝐵) = (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩)
5 opelxpi 5556 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
65fvresd 6665 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩))
7 df-ov 7138 . . . 4 (𝐴(abs ∘ − )𝐵) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩)
8 recn 10616 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
9 recn 10616 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
10 eqid 2798 . . . . . 6 (abs ∘ − ) = (abs ∘ − )
1110cnmetdval 23376 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴(abs ∘ − )𝐵) = (abs‘(𝐴𝐵)))
128, 9, 11syl2an 598 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(abs ∘ − )𝐵) = (abs‘(𝐴𝐵)))
137, 12syl5eqr 2847 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs ∘ − )‘⟨𝐴, 𝐵⟩) = (abs‘(𝐴𝐵)))
146, 13eqtrd 2833 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩) = (abs‘(𝐴𝐵)))
154, 14syl5eq 2845 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  cop 4531   × cxp 5517  cres 5521  ccom 5523  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  cmin 10859  abscabs 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-sub 10861
This theorem is referenced by:  bl2ioo  23397  xrsdsre  23415  reconnlem2  23432  rrxdstprj1  24013  dvlip2  24598  nmcvcn  28478  poimirlem29  35086  rrndstprj1  35268  rrndstprj2  35269  rrncmslem  35270  ismrer1  35276  rrnprjdstle  42943
  Copyright terms: Public domain W3C validator