MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remetdval Structured version   Visualization version   GIF version

Theorem remetdval 24724
Description: Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.)
Hypothesis
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
remetdval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))

Proof of Theorem remetdval
StepHypRef Expression
1 df-ov 7358 . . 3 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
2 remet.1 . . . 4 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
32fveq1i 6832 . . 3 (𝐷‘⟨𝐴, 𝐵⟩) = (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩)
41, 3eqtri 2756 . 2 (𝐴𝐷𝐵) = (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩)
5 opelxpi 5658 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
65fvresd 6851 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩))
7 df-ov 7358 . . . 4 (𝐴(abs ∘ − )𝐵) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩)
8 recn 11107 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
9 recn 11107 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
10 eqid 2733 . . . . . 6 (abs ∘ − ) = (abs ∘ − )
1110cnmetdval 24705 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴(abs ∘ − )𝐵) = (abs‘(𝐴𝐵)))
128, 9, 11syl2an 596 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(abs ∘ − )𝐵) = (abs‘(𝐴𝐵)))
137, 12eqtr3id 2782 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs ∘ − )‘⟨𝐴, 𝐵⟩) = (abs‘(𝐴𝐵)))
146, 13eqtrd 2768 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩) = (abs‘(𝐴𝐵)))
154, 14eqtrid 2780 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  cop 4583   × cxp 5619  cres 5623  ccom 5625  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  cmin 11355  abscabs 15148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-ltxr 11162  df-sub 11357
This theorem is referenced by:  bl2ioo  24727  xrsdsre  24746  reconnlem2  24763  rrxdstprj1  25356  dvlip2  25947  nmcvcn  30696  poimirlem29  37762  rrndstprj1  37943  rrndstprj2  37944  rrncmslem  37945  ismrer1  37951  rrnprjdstle  46461
  Copyright terms: Public domain W3C validator