MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remetdval Structured version   Visualization version   GIF version

Theorem remetdval 23858
Description: Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.)
Hypothesis
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
remetdval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))

Proof of Theorem remetdval
StepHypRef Expression
1 df-ov 7258 . . 3 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
2 remet.1 . . . 4 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
32fveq1i 6757 . . 3 (𝐷‘⟨𝐴, 𝐵⟩) = (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩)
41, 3eqtri 2766 . 2 (𝐴𝐷𝐵) = (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩)
5 opelxpi 5617 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
65fvresd 6776 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩))
7 df-ov 7258 . . . 4 (𝐴(abs ∘ − )𝐵) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩)
8 recn 10892 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
9 recn 10892 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
10 eqid 2738 . . . . . 6 (abs ∘ − ) = (abs ∘ − )
1110cnmetdval 23840 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴(abs ∘ − )𝐵) = (abs‘(𝐴𝐵)))
128, 9, 11syl2an 595 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(abs ∘ − )𝐵) = (abs‘(𝐴𝐵)))
137, 12eqtr3id 2793 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs ∘ − )‘⟨𝐴, 𝐵⟩) = (abs‘(𝐴𝐵)))
146, 13eqtrd 2778 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩) = (abs‘(𝐴𝐵)))
154, 14eqtrid 2790 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4564   × cxp 5578  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  cmin 11135  abscabs 14873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137
This theorem is referenced by:  bl2ioo  23861  xrsdsre  23879  reconnlem2  23896  rrxdstprj1  24478  dvlip2  25064  nmcvcn  28958  poimirlem29  35733  rrndstprj1  35915  rrndstprj2  35916  rrncmslem  35917  ismrer1  35923  rrnprjdstle  43732
  Copyright terms: Public domain W3C validator