MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remetdval Structured version   Visualization version   GIF version

Theorem remetdval 23397
Description: Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.)
Hypothesis
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
remetdval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))

Proof of Theorem remetdval
StepHypRef Expression
1 df-ov 7152 . . 3 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
2 remet.1 . . . 4 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
32fveq1i 6662 . . 3 (𝐷‘⟨𝐴, 𝐵⟩) = (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩)
41, 3eqtri 2847 . 2 (𝐴𝐷𝐵) = (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩)
5 opelxpi 5579 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
65fvresd 6681 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩))
7 df-ov 7152 . . . 4 (𝐴(abs ∘ − )𝐵) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩)
8 recn 10625 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
9 recn 10625 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
10 eqid 2824 . . . . . 6 (abs ∘ − ) = (abs ∘ − )
1110cnmetdval 23379 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴(abs ∘ − )𝐵) = (abs‘(𝐴𝐵)))
128, 9, 11syl2an 598 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(abs ∘ − )𝐵) = (abs‘(𝐴𝐵)))
137, 12syl5eqr 2873 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs ∘ − )‘⟨𝐴, 𝐵⟩) = (abs‘(𝐴𝐵)))
146, 13eqtrd 2859 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩) = (abs‘(𝐴𝐵)))
154, 14syl5eq 2871 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cop 4556   × cxp 5540  cres 5544  ccom 5546  cfv 6343  (class class class)co 7149  cc 10533  cr 10534  cmin 10868  abscabs 14593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-ltxr 10678  df-sub 10870
This theorem is referenced by:  bl2ioo  23400  xrsdsre  23418  reconnlem2  23435  rrxdstprj1  24016  dvlip2  24601  nmcvcn  28481  poimirlem29  35031  rrndstprj1  35213  rrndstprj2  35214  rrncmslem  35215  ismrer1  35221  rrnprjdstle  42869
  Copyright terms: Public domain W3C validator