MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remetdval Structured version   Visualization version   GIF version

Theorem remetdval 24699
Description: Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.)
Hypothesis
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
remetdval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))

Proof of Theorem remetdval
StepHypRef Expression
1 df-ov 7418 . . 3 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
2 remet.1 . . . 4 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
32fveq1i 6893 . . 3 (𝐷‘⟨𝐴, 𝐵⟩) = (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩)
41, 3eqtri 2756 . 2 (𝐴𝐷𝐵) = (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩)
5 opelxpi 5710 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ⟨𝐴, 𝐵⟩ ∈ (ℝ × ℝ))
65fvresd 6912 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩))
7 df-ov 7418 . . . 4 (𝐴(abs ∘ − )𝐵) = ((abs ∘ − )‘⟨𝐴, 𝐵⟩)
8 recn 11223 . . . . 5 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
9 recn 11223 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
10 eqid 2728 . . . . . 6 (abs ∘ − ) = (abs ∘ − )
1110cnmetdval 24681 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴(abs ∘ − )𝐵) = (abs‘(𝐴𝐵)))
128, 9, 11syl2an 595 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(abs ∘ − )𝐵) = (abs‘(𝐴𝐵)))
137, 12eqtr3id 2782 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs ∘ − )‘⟨𝐴, 𝐵⟩) = (abs‘(𝐴𝐵)))
146, 13eqtrd 2768 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((abs ∘ − ) ↾ (ℝ × ℝ))‘⟨𝐴, 𝐵⟩) = (abs‘(𝐴𝐵)))
154, 14eqtrid 2780 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cop 4631   × cxp 5671  cres 5675  ccom 5677  cfv 6543  (class class class)co 7415  cc 11131  cr 11132  cmin 11469  abscabs 15208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5571  df-po 5585  df-so 5586  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-1st 7988  df-2nd 7989  df-er 8719  df-en 8959  df-dom 8960  df-sdom 8961  df-pnf 11275  df-mnf 11276  df-ltxr 11278  df-sub 11471
This theorem is referenced by:  bl2ioo  24702  xrsdsre  24720  reconnlem2  24737  rrxdstprj1  25331  dvlip2  25922  nmcvcn  30499  poimirlem29  37117  rrndstprj1  37298  rrndstprj2  37299  rrncmslem  37300  ismrer1  37306  rrnprjdstle  45680
  Copyright terms: Public domain W3C validator