| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnprjdstle | Structured version Visualization version GIF version | ||
| Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| rrnprjdstle.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| rrnprjdstle.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| rrnprjdstle.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℝ) |
| rrnprjdstle.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| rrnprjdstle.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝑋)) |
| Ref | Expression |
|---|---|
| rrnprjdstle | ⊢ (𝜑 → (abs‘((𝐹‘𝐼) − (𝐺‘𝐼))) ≤ (𝐹𝐷𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnprjdstle.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) | |
| 2 | rrnprjdstle.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 3 | 1, 2 | ffvelcdmd 7071 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐼) ∈ ℝ) |
| 4 | rrnprjdstle.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝑋⟶ℝ) | |
| 5 | 4, 2 | ffvelcdmd 7071 | . . . 4 ⊢ (𝜑 → (𝐺‘𝐼) ∈ ℝ) |
| 6 | eqid 2734 | . . . . 5 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 7 | 6 | remetdval 24713 | . . . 4 ⊢ (((𝐹‘𝐼) ∈ ℝ ∧ (𝐺‘𝐼) ∈ ℝ) → ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼)) = (abs‘((𝐹‘𝐼) − (𝐺‘𝐼)))) |
| 8 | 3, 5, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼)) = (abs‘((𝐹‘𝐼) − (𝐺‘𝐼)))) |
| 9 | 8 | eqcomd 2740 | . 2 ⊢ (𝜑 → (abs‘((𝐹‘𝐼) − (𝐺‘𝐼))) = ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼))) |
| 10 | rrnprjdstle.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 11 | reex 11212 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ V) |
| 13 | 12, 10 | elmapd 8848 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (ℝ ↑m 𝑋) ↔ 𝐹:𝑋⟶ℝ)) |
| 14 | 1, 13 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (ℝ ↑m 𝑋)) |
| 15 | eqid 2734 | . . . . . 6 ⊢ (ℝ^‘𝑋) = (ℝ^‘𝑋) | |
| 16 | eqid 2734 | . . . . . 6 ⊢ (Base‘(ℝ^‘𝑋)) = (Base‘(ℝ^‘𝑋)) | |
| 17 | 10, 15, 16 | rrxbasefi 25347 | . . . . 5 ⊢ (𝜑 → (Base‘(ℝ^‘𝑋)) = (ℝ ↑m 𝑋)) |
| 18 | 15, 16 | rrxbase 25325 | . . . . . 6 ⊢ (𝑋 ∈ Fin → (Base‘(ℝ^‘𝑋)) = {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
| 19 | 10, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (Base‘(ℝ^‘𝑋)) = {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
| 20 | 17, 19 | eqtr3d 2771 | . . . 4 ⊢ (𝜑 → (ℝ ↑m 𝑋) = {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
| 21 | 14, 20 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝐹 ∈ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
| 22 | 12, 10 | elmapd 8848 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (ℝ ↑m 𝑋) ↔ 𝐺:𝑋⟶ℝ)) |
| 23 | 4, 22 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (ℝ ↑m 𝑋)) |
| 24 | 23, 20 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝐺 ∈ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
| 25 | eqid 2734 | . . . 4 ⊢ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0} = {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0} | |
| 26 | rrnprjdstle.d | . . . 4 ⊢ 𝐷 = (dist‘(ℝ^‘𝑋)) | |
| 27 | 25, 26, 6 | rrxdstprj1 25346 | . . 3 ⊢ (((𝑋 ∈ Fin ∧ 𝐼 ∈ 𝑋) ∧ (𝐹 ∈ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0} ∧ 𝐺 ∈ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0})) → ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼)) ≤ (𝐹𝐷𝐺)) |
| 28 | 10, 2, 21, 24, 27 | syl22anc 838 | . 2 ⊢ (𝜑 → ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼)) ≤ (𝐹𝐷𝐺)) |
| 29 | 9, 28 | eqbrtrd 5138 | 1 ⊢ (𝜑 → (abs‘((𝐹‘𝐼) − (𝐺‘𝐼))) ≤ (𝐹𝐷𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3413 Vcvv 3457 class class class wbr 5116 × cxp 5649 ↾ cres 5653 ∘ ccom 5655 ⟶wf 6523 ‘cfv 6527 (class class class)co 7399 ↑m cmap 8834 Fincfn 8953 finSupp cfsupp 9367 ℝcr 11120 0cc0 11121 ≤ cle 11262 − cmin 11458 abscabs 15240 Basecbs 17213 distcds 17265 ℝ^crrx 25320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-inf2 9647 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 ax-addf 11200 ax-mulf 11201 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-tp 4604 df-op 4606 df-uni 4881 df-int 4920 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-se 5604 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-isom 6536 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-of 7665 df-om 7856 df-1st 7982 df-2nd 7983 df-supp 8154 df-tpos 8219 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-1o 8474 df-er 8713 df-map 8836 df-ixp 8906 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-fsupp 9368 df-sup 9448 df-oi 9516 df-card 9945 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-div 11887 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-5 12298 df-6 12299 df-7 12300 df-8 12301 df-9 12302 df-n0 12494 df-z 12581 df-dec 12701 df-uz 12845 df-rp 13001 df-xneg 13120 df-xadd 13121 df-xmul 13122 df-ico 13359 df-fz 13514 df-fzo 13661 df-seq 14009 df-exp 14069 df-hash 14337 df-cj 15105 df-re 15106 df-im 15107 df-sqrt 15241 df-abs 15242 df-clim 15491 df-sum 15690 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-plusg 17269 df-mulr 17270 df-starv 17271 df-sca 17272 df-vsca 17273 df-ip 17274 df-tset 17275 df-ple 17276 df-ds 17278 df-unif 17279 df-hom 17280 df-cco 17281 df-0g 17440 df-gsum 17441 df-prds 17446 df-pws 17448 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18746 df-grp 18904 df-minusg 18905 df-sbg 18906 df-subg 19091 df-ghm 19181 df-cntz 19285 df-cmn 19748 df-abl 19749 df-mgp 20086 df-rng 20098 df-ur 20127 df-ring 20180 df-cring 20181 df-oppr 20282 df-dvdsr 20302 df-unit 20303 df-invr 20333 df-dvr 20346 df-rhm 20417 df-subrng 20491 df-subrg 20515 df-drng 20676 df-field 20677 df-staf 20784 df-srng 20785 df-lmod 20804 df-lss 20874 df-sra 21116 df-rgmod 21117 df-xmet 21293 df-met 21294 df-cnfld 21301 df-refld 21550 df-dsmm 21677 df-frlm 21692 df-nm 24506 df-tng 24508 df-tcph 25106 df-rrx 25322 |
| This theorem is referenced by: ioorrnopnlem 46263 |
| Copyright terms: Public domain | W3C validator |