![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnprjdstle | Structured version Visualization version GIF version |
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
rrnprjdstle.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
rrnprjdstle.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
rrnprjdstle.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℝ) |
rrnprjdstle.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
rrnprjdstle.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝑋)) |
Ref | Expression |
---|---|
rrnprjdstle | ⊢ (𝜑 → (abs‘((𝐹‘𝐼) − (𝐺‘𝐼))) ≤ (𝐹𝐷𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrnprjdstle.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) | |
2 | rrnprjdstle.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
3 | 1, 2 | ffvelcdmd 7121 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐼) ∈ ℝ) |
4 | rrnprjdstle.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝑋⟶ℝ) | |
5 | 4, 2 | ffvelcdmd 7121 | . . . 4 ⊢ (𝜑 → (𝐺‘𝐼) ∈ ℝ) |
6 | eqid 2740 | . . . . 5 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
7 | 6 | remetdval 24832 | . . . 4 ⊢ (((𝐹‘𝐼) ∈ ℝ ∧ (𝐺‘𝐼) ∈ ℝ) → ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼)) = (abs‘((𝐹‘𝐼) − (𝐺‘𝐼)))) |
8 | 3, 5, 7 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼)) = (abs‘((𝐹‘𝐼) − (𝐺‘𝐼)))) |
9 | 8 | eqcomd 2746 | . 2 ⊢ (𝜑 → (abs‘((𝐹‘𝐼) − (𝐺‘𝐼))) = ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼))) |
10 | rrnprjdstle.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
11 | reex 11277 | . . . . . . 7 ⊢ ℝ ∈ V | |
12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ V) |
13 | 12, 10 | elmapd 8900 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (ℝ ↑m 𝑋) ↔ 𝐹:𝑋⟶ℝ)) |
14 | 1, 13 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (ℝ ↑m 𝑋)) |
15 | eqid 2740 | . . . . . 6 ⊢ (ℝ^‘𝑋) = (ℝ^‘𝑋) | |
16 | eqid 2740 | . . . . . 6 ⊢ (Base‘(ℝ^‘𝑋)) = (Base‘(ℝ^‘𝑋)) | |
17 | 10, 15, 16 | rrxbasefi 25465 | . . . . 5 ⊢ (𝜑 → (Base‘(ℝ^‘𝑋)) = (ℝ ↑m 𝑋)) |
18 | 15, 16 | rrxbase 25443 | . . . . . 6 ⊢ (𝑋 ∈ Fin → (Base‘(ℝ^‘𝑋)) = {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
19 | 10, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (Base‘(ℝ^‘𝑋)) = {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
20 | 17, 19 | eqtr3d 2782 | . . . 4 ⊢ (𝜑 → (ℝ ↑m 𝑋) = {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
21 | 14, 20 | eleqtrd 2846 | . . 3 ⊢ (𝜑 → 𝐹 ∈ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
22 | 12, 10 | elmapd 8900 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (ℝ ↑m 𝑋) ↔ 𝐺:𝑋⟶ℝ)) |
23 | 4, 22 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (ℝ ↑m 𝑋)) |
24 | 23, 20 | eleqtrd 2846 | . . 3 ⊢ (𝜑 → 𝐺 ∈ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
25 | eqid 2740 | . . . 4 ⊢ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0} = {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0} | |
26 | rrnprjdstle.d | . . . 4 ⊢ 𝐷 = (dist‘(ℝ^‘𝑋)) | |
27 | 25, 26, 6 | rrxdstprj1 25464 | . . 3 ⊢ (((𝑋 ∈ Fin ∧ 𝐼 ∈ 𝑋) ∧ (𝐹 ∈ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0} ∧ 𝐺 ∈ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0})) → ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼)) ≤ (𝐹𝐷𝐺)) |
28 | 10, 2, 21, 24, 27 | syl22anc 838 | . 2 ⊢ (𝜑 → ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼)) ≤ (𝐹𝐷𝐺)) |
29 | 9, 28 | eqbrtrd 5188 | 1 ⊢ (𝜑 → (abs‘((𝐹‘𝐼) − (𝐺‘𝐼))) ≤ (𝐹𝐷𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 class class class wbr 5166 × cxp 5698 ↾ cres 5702 ∘ ccom 5704 ⟶wf 6571 ‘cfv 6575 (class class class)co 7450 ↑m cmap 8886 Fincfn 9005 finSupp cfsupp 9433 ℝcr 11185 0cc0 11186 ≤ cle 11327 − cmin 11522 abscabs 15285 Basecbs 17260 distcds 17322 ℝ^crrx 25438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-inf2 9712 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 ax-addf 11265 ax-mulf 11266 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-of 7716 df-om 7906 df-1st 8032 df-2nd 8033 df-supp 8204 df-tpos 8269 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-er 8765 df-map 8888 df-ixp 8958 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-fsupp 9434 df-sup 9513 df-oi 9581 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-rp 13060 df-xneg 13177 df-xadd 13178 df-xmul 13179 df-ico 13415 df-fz 13570 df-fzo 13714 df-seq 14055 df-exp 14115 df-hash 14382 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-clim 15536 df-sum 15737 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-starv 17328 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ple 17333 df-ds 17335 df-unif 17336 df-hom 17337 df-cco 17338 df-0g 17503 df-gsum 17504 df-prds 17509 df-pws 17511 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-mhm 18820 df-grp 18978 df-minusg 18979 df-sbg 18980 df-subg 19165 df-ghm 19255 df-cntz 19359 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-ring 20264 df-cring 20265 df-oppr 20362 df-dvdsr 20385 df-unit 20386 df-invr 20416 df-dvr 20429 df-rhm 20500 df-subrng 20574 df-subrg 20599 df-drng 20755 df-field 20756 df-staf 20864 df-srng 20865 df-lmod 20884 df-lss 20955 df-sra 21197 df-rgmod 21198 df-xmet 21382 df-met 21383 df-cnfld 21390 df-refld 21648 df-dsmm 21777 df-frlm 21792 df-nm 24618 df-tng 24620 df-tcph 25224 df-rrx 25440 |
This theorem is referenced by: ioorrnopnlem 46227 |
Copyright terms: Public domain | W3C validator |