Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnprjdstle Structured version   Visualization version   GIF version

Theorem rrnprjdstle 46249
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
rrnprjdstle.x (𝜑𝑋 ∈ Fin)
rrnprjdstle.f (𝜑𝐹:𝑋⟶ℝ)
rrnprjdstle.g (𝜑𝐺:𝑋⟶ℝ)
rrnprjdstle.i (𝜑𝐼𝑋)
rrnprjdstle.d 𝐷 = (dist‘(ℝ^‘𝑋))
Assertion
Ref Expression
rrnprjdstle (𝜑 → (abs‘((𝐹𝐼) − (𝐺𝐼))) ≤ (𝐹𝐷𝐺))

Proof of Theorem rrnprjdstle
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rrnprjdstle.f . . . . 5 (𝜑𝐹:𝑋⟶ℝ)
2 rrnprjdstle.i . . . . 5 (𝜑𝐼𝑋)
31, 2ffvelcdmd 7084 . . . 4 (𝜑 → (𝐹𝐼) ∈ ℝ)
4 rrnprjdstle.g . . . . 5 (𝜑𝐺:𝑋⟶ℝ)
54, 2ffvelcdmd 7084 . . . 4 (𝜑 → (𝐺𝐼) ∈ ℝ)
6 eqid 2734 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
76remetdval 24745 . . . 4 (((𝐹𝐼) ∈ ℝ ∧ (𝐺𝐼) ∈ ℝ) → ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)) = (abs‘((𝐹𝐼) − (𝐺𝐼))))
83, 5, 7syl2anc 584 . . 3 (𝜑 → ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)) = (abs‘((𝐹𝐼) − (𝐺𝐼))))
98eqcomd 2740 . 2 (𝜑 → (abs‘((𝐹𝐼) − (𝐺𝐼))) = ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)))
10 rrnprjdstle.x . . 3 (𝜑𝑋 ∈ Fin)
11 reex 11227 . . . . . . 7 ℝ ∈ V
1211a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
1312, 10elmapd 8861 . . . . 5 (𝜑 → (𝐹 ∈ (ℝ ↑m 𝑋) ↔ 𝐹:𝑋⟶ℝ))
141, 13mpbird 257 . . . 4 (𝜑𝐹 ∈ (ℝ ↑m 𝑋))
15 eqid 2734 . . . . . 6 (ℝ^‘𝑋) = (ℝ^‘𝑋)
16 eqid 2734 . . . . . 6 (Base‘(ℝ^‘𝑋)) = (Base‘(ℝ^‘𝑋))
1710, 15, 16rrxbasefi 25379 . . . . 5 (𝜑 → (Base‘(ℝ^‘𝑋)) = (ℝ ↑m 𝑋))
1815, 16rrxbase 25357 . . . . . 6 (𝑋 ∈ Fin → (Base‘(ℝ^‘𝑋)) = { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
1910, 18syl 17 . . . . 5 (𝜑 → (Base‘(ℝ^‘𝑋)) = { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
2017, 19eqtr3d 2771 . . . 4 (𝜑 → (ℝ ↑m 𝑋) = { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
2114, 20eleqtrd 2835 . . 3 (𝜑𝐹 ∈ { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
2212, 10elmapd 8861 . . . . 5 (𝜑 → (𝐺 ∈ (ℝ ↑m 𝑋) ↔ 𝐺:𝑋⟶ℝ))
234, 22mpbird 257 . . . 4 (𝜑𝐺 ∈ (ℝ ↑m 𝑋))
2423, 20eleqtrd 2835 . . 3 (𝜑𝐺 ∈ { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
25 eqid 2734 . . . 4 { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0} = { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0}
26 rrnprjdstle.d . . . 4 𝐷 = (dist‘(ℝ^‘𝑋))
2725, 26, 6rrxdstprj1 25378 . . 3 (((𝑋 ∈ Fin ∧ 𝐼𝑋) ∧ (𝐹 ∈ { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0} ∧ 𝐺 ∈ { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})) → ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)) ≤ (𝐹𝐷𝐺))
2810, 2, 21, 24, 27syl22anc 838 . 2 (𝜑 → ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)) ≤ (𝐹𝐷𝐺))
299, 28eqbrtrd 5145 1 (𝜑 → (abs‘((𝐹𝐼) − (𝐺𝐼))) ≤ (𝐹𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {crab 3419  Vcvv 3463   class class class wbr 5123   × cxp 5663  cres 5667  ccom 5669  wf 6536  cfv 6540  (class class class)co 7412  m cmap 8847  Fincfn 8966   finSupp cfsupp 9382  cr 11135  0cc0 11136  cle 11277  cmin 11473  abscabs 15254  Basecbs 17228  distcds 17281  ℝ^crrx 25352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-inf2 9662  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214  ax-addf 11215  ax-mulf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7678  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-map 8849  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9383  df-sup 9463  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-div 11902  df-nn 12248  df-2 12310  df-3 12311  df-4 12312  df-5 12313  df-6 12314  df-7 12315  df-8 12316  df-9 12317  df-n0 12509  df-z 12596  df-dec 12716  df-uz 12860  df-rp 13016  df-xneg 13135  df-xadd 13136  df-xmul 13137  df-ico 13374  df-fz 13529  df-fzo 13676  df-seq 14024  df-exp 14084  df-hash 14351  df-cj 15119  df-re 15120  df-im 15121  df-sqrt 15255  df-abs 15256  df-clim 15505  df-sum 15704  df-struct 17165  df-sets 17182  df-slot 17200  df-ndx 17212  df-base 17229  df-ress 17252  df-plusg 17285  df-mulr 17286  df-starv 17287  df-sca 17288  df-vsca 17289  df-ip 17290  df-tset 17291  df-ple 17292  df-ds 17294  df-unif 17295  df-hom 17296  df-cco 17297  df-0g 17456  df-gsum 17457  df-prds 17462  df-pws 17464  df-mgm 18621  df-sgrp 18700  df-mnd 18716  df-mhm 18764  df-grp 18922  df-minusg 18923  df-sbg 18924  df-subg 19109  df-ghm 19199  df-cntz 19303  df-cmn 19767  df-abl 19768  df-mgp 20105  df-rng 20117  df-ur 20146  df-ring 20199  df-cring 20200  df-oppr 20301  df-dvdsr 20324  df-unit 20325  df-invr 20355  df-dvr 20368  df-rhm 20439  df-subrng 20513  df-subrg 20537  df-drng 20698  df-field 20699  df-staf 20807  df-srng 20808  df-lmod 20827  df-lss 20897  df-sra 21139  df-rgmod 21140  df-xmet 21318  df-met 21319  df-cnfld 21326  df-refld 21576  df-dsmm 21705  df-frlm 21720  df-nm 24538  df-tng 24540  df-tcph 25138  df-rrx 25354
This theorem is referenced by:  ioorrnopnlem  46252
  Copyright terms: Public domain W3C validator