Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnprjdstle Structured version   Visualization version   GIF version

Theorem rrnprjdstle 42943
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
rrnprjdstle.x (𝜑𝑋 ∈ Fin)
rrnprjdstle.f (𝜑𝐹:𝑋⟶ℝ)
rrnprjdstle.g (𝜑𝐺:𝑋⟶ℝ)
rrnprjdstle.i (𝜑𝐼𝑋)
rrnprjdstle.d 𝐷 = (dist‘(ℝ^‘𝑋))
Assertion
Ref Expression
rrnprjdstle (𝜑 → (abs‘((𝐹𝐼) − (𝐺𝐼))) ≤ (𝐹𝐷𝐺))

Proof of Theorem rrnprjdstle
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rrnprjdstle.f . . . . 5 (𝜑𝐹:𝑋⟶ℝ)
2 rrnprjdstle.i . . . . 5 (𝜑𝐼𝑋)
31, 2ffvelrnd 6829 . . . 4 (𝜑 → (𝐹𝐼) ∈ ℝ)
4 rrnprjdstle.g . . . . 5 (𝜑𝐺:𝑋⟶ℝ)
54, 2ffvelrnd 6829 . . . 4 (𝜑 → (𝐺𝐼) ∈ ℝ)
6 eqid 2798 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
76remetdval 23394 . . . 4 (((𝐹𝐼) ∈ ℝ ∧ (𝐺𝐼) ∈ ℝ) → ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)) = (abs‘((𝐹𝐼) − (𝐺𝐼))))
83, 5, 7syl2anc 587 . . 3 (𝜑 → ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)) = (abs‘((𝐹𝐼) − (𝐺𝐼))))
98eqcomd 2804 . 2 (𝜑 → (abs‘((𝐹𝐼) − (𝐺𝐼))) = ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)))
10 rrnprjdstle.x . . 3 (𝜑𝑋 ∈ Fin)
11 reex 10617 . . . . . . 7 ℝ ∈ V
1211a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
1312, 10elmapd 8403 . . . . 5 (𝜑 → (𝐹 ∈ (ℝ ↑m 𝑋) ↔ 𝐹:𝑋⟶ℝ))
141, 13mpbird 260 . . . 4 (𝜑𝐹 ∈ (ℝ ↑m 𝑋))
15 eqid 2798 . . . . . 6 (ℝ^‘𝑋) = (ℝ^‘𝑋)
16 eqid 2798 . . . . . 6 (Base‘(ℝ^‘𝑋)) = (Base‘(ℝ^‘𝑋))
1710, 15, 16rrxbasefi 24014 . . . . 5 (𝜑 → (Base‘(ℝ^‘𝑋)) = (ℝ ↑m 𝑋))
1815, 16rrxbase 23992 . . . . . 6 (𝑋 ∈ Fin → (Base‘(ℝ^‘𝑋)) = { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
1910, 18syl 17 . . . . 5 (𝜑 → (Base‘(ℝ^‘𝑋)) = { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
2017, 19eqtr3d 2835 . . . 4 (𝜑 → (ℝ ↑m 𝑋) = { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
2114, 20eleqtrd 2892 . . 3 (𝜑𝐹 ∈ { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
2212, 10elmapd 8403 . . . . 5 (𝜑 → (𝐺 ∈ (ℝ ↑m 𝑋) ↔ 𝐺:𝑋⟶ℝ))
234, 22mpbird 260 . . . 4 (𝜑𝐺 ∈ (ℝ ↑m 𝑋))
2423, 20eleqtrd 2892 . . 3 (𝜑𝐺 ∈ { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
25 eqid 2798 . . . 4 { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0} = { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0}
26 rrnprjdstle.d . . . 4 𝐷 = (dist‘(ℝ^‘𝑋))
2725, 26, 6rrxdstprj1 24013 . . 3 (((𝑋 ∈ Fin ∧ 𝐼𝑋) ∧ (𝐹 ∈ { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0} ∧ 𝐺 ∈ { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})) → ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)) ≤ (𝐹𝐷𝐺))
2810, 2, 21, 24, 27syl22anc 837 . 2 (𝜑 → ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)) ≤ (𝐹𝐷𝐺))
299, 28eqbrtrd 5052 1 (𝜑 → (abs‘((𝐹𝐼) − (𝐺𝐼))) ≤ (𝐹𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  {crab 3110  Vcvv 3441   class class class wbr 5030   × cxp 5517  cres 5521  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492   finSupp cfsupp 8817  cr 10525  0cc0 10526  cle 10665  cmin 10859  abscabs 14585  Basecbs 16475  distcds 16566  ℝ^crrx 23987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-field 19498  df-subrg 19526  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-xmet 20084  df-met 20085  df-cnfld 20092  df-refld 20294  df-dsmm 20421  df-frlm 20436  df-nm 23189  df-tng 23191  df-tcph 23774  df-rrx 23989
This theorem is referenced by:  ioorrnopnlem  42946
  Copyright terms: Public domain W3C validator