| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rrnprjdstle | Structured version Visualization version GIF version | ||
| Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| rrnprjdstle.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| rrnprjdstle.f | ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| rrnprjdstle.g | ⊢ (𝜑 → 𝐺:𝑋⟶ℝ) |
| rrnprjdstle.i | ⊢ (𝜑 → 𝐼 ∈ 𝑋) |
| rrnprjdstle.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝑋)) |
| Ref | Expression |
|---|---|
| rrnprjdstle | ⊢ (𝜑 → (abs‘((𝐹‘𝐼) − (𝐺‘𝐼))) ≤ (𝐹𝐷𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrnprjdstle.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) | |
| 2 | rrnprjdstle.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑋) | |
| 3 | 1, 2 | ffvelcdmd 7084 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐼) ∈ ℝ) |
| 4 | rrnprjdstle.g | . . . . 5 ⊢ (𝜑 → 𝐺:𝑋⟶ℝ) | |
| 5 | 4, 2 | ffvelcdmd 7084 | . . . 4 ⊢ (𝜑 → (𝐺‘𝐼) ∈ ℝ) |
| 6 | eqid 2734 | . . . . 5 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 7 | 6 | remetdval 24745 | . . . 4 ⊢ (((𝐹‘𝐼) ∈ ℝ ∧ (𝐺‘𝐼) ∈ ℝ) → ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼)) = (abs‘((𝐹‘𝐼) − (𝐺‘𝐼)))) |
| 8 | 3, 5, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼)) = (abs‘((𝐹‘𝐼) − (𝐺‘𝐼)))) |
| 9 | 8 | eqcomd 2740 | . 2 ⊢ (𝜑 → (abs‘((𝐹‘𝐼) − (𝐺‘𝐼))) = ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼))) |
| 10 | rrnprjdstle.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 11 | reex 11227 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 12 | 11 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ V) |
| 13 | 12, 10 | elmapd 8861 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (ℝ ↑m 𝑋) ↔ 𝐹:𝑋⟶ℝ)) |
| 14 | 1, 13 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (ℝ ↑m 𝑋)) |
| 15 | eqid 2734 | . . . . . 6 ⊢ (ℝ^‘𝑋) = (ℝ^‘𝑋) | |
| 16 | eqid 2734 | . . . . . 6 ⊢ (Base‘(ℝ^‘𝑋)) = (Base‘(ℝ^‘𝑋)) | |
| 17 | 10, 15, 16 | rrxbasefi 25379 | . . . . 5 ⊢ (𝜑 → (Base‘(ℝ^‘𝑋)) = (ℝ ↑m 𝑋)) |
| 18 | 15, 16 | rrxbase 25357 | . . . . . 6 ⊢ (𝑋 ∈ Fin → (Base‘(ℝ^‘𝑋)) = {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
| 19 | 10, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → (Base‘(ℝ^‘𝑋)) = {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
| 20 | 17, 19 | eqtr3d 2771 | . . . 4 ⊢ (𝜑 → (ℝ ↑m 𝑋) = {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
| 21 | 14, 20 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝐹 ∈ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
| 22 | 12, 10 | elmapd 8861 | . . . . 5 ⊢ (𝜑 → (𝐺 ∈ (ℝ ↑m 𝑋) ↔ 𝐺:𝑋⟶ℝ)) |
| 23 | 4, 22 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (ℝ ↑m 𝑋)) |
| 24 | 23, 20 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝐺 ∈ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0}) |
| 25 | eqid 2734 | . . . 4 ⊢ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0} = {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0} | |
| 26 | rrnprjdstle.d | . . . 4 ⊢ 𝐷 = (dist‘(ℝ^‘𝑋)) | |
| 27 | 25, 26, 6 | rrxdstprj1 25378 | . . 3 ⊢ (((𝑋 ∈ Fin ∧ 𝐼 ∈ 𝑋) ∧ (𝐹 ∈ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0} ∧ 𝐺 ∈ {ℎ ∈ (ℝ ↑m 𝑋) ∣ ℎ finSupp 0})) → ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼)) ≤ (𝐹𝐷𝐺)) |
| 28 | 10, 2, 21, 24, 27 | syl22anc 838 | . 2 ⊢ (𝜑 → ((𝐹‘𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺‘𝐼)) ≤ (𝐹𝐷𝐺)) |
| 29 | 9, 28 | eqbrtrd 5145 | 1 ⊢ (𝜑 → (abs‘((𝐹‘𝐼) − (𝐺‘𝐼))) ≤ (𝐹𝐷𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 Vcvv 3463 class class class wbr 5123 × cxp 5663 ↾ cres 5667 ∘ ccom 5669 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 ↑m cmap 8847 Fincfn 8966 finSupp cfsupp 9382 ℝcr 11135 0cc0 11136 ≤ cle 11277 − cmin 11473 abscabs 15254 Basecbs 17228 distcds 17281 ℝ^crrx 25352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 ax-addf 11215 ax-mulf 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-om 7869 df-1st 7995 df-2nd 7996 df-supp 8167 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8726 df-map 8849 df-ixp 8919 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-fsupp 9383 df-sup 9463 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-div 11902 df-nn 12248 df-2 12310 df-3 12311 df-4 12312 df-5 12313 df-6 12314 df-7 12315 df-8 12316 df-9 12317 df-n0 12509 df-z 12596 df-dec 12716 df-uz 12860 df-rp 13016 df-xneg 13135 df-xadd 13136 df-xmul 13137 df-ico 13374 df-fz 13529 df-fzo 13676 df-seq 14024 df-exp 14084 df-hash 14351 df-cj 15119 df-re 15120 df-im 15121 df-sqrt 15255 df-abs 15256 df-clim 15505 df-sum 15704 df-struct 17165 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-starv 17287 df-sca 17288 df-vsca 17289 df-ip 17290 df-tset 17291 df-ple 17292 df-ds 17294 df-unif 17295 df-hom 17296 df-cco 17297 df-0g 17456 df-gsum 17457 df-prds 17462 df-pws 17464 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-mhm 18764 df-grp 18922 df-minusg 18923 df-sbg 18924 df-subg 19109 df-ghm 19199 df-cntz 19303 df-cmn 19767 df-abl 19768 df-mgp 20105 df-rng 20117 df-ur 20146 df-ring 20199 df-cring 20200 df-oppr 20301 df-dvdsr 20324 df-unit 20325 df-invr 20355 df-dvr 20368 df-rhm 20439 df-subrng 20513 df-subrg 20537 df-drng 20698 df-field 20699 df-staf 20807 df-srng 20808 df-lmod 20827 df-lss 20897 df-sra 21139 df-rgmod 21140 df-xmet 21318 df-met 21319 df-cnfld 21326 df-refld 21576 df-dsmm 21705 df-frlm 21720 df-nm 24538 df-tng 24540 df-tcph 25138 df-rrx 25354 |
| This theorem is referenced by: ioorrnopnlem 46252 |
| Copyright terms: Public domain | W3C validator |