Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnprjdstle Structured version   Visualization version   GIF version

Theorem rrnprjdstle 46292
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
rrnprjdstle.x (𝜑𝑋 ∈ Fin)
rrnprjdstle.f (𝜑𝐹:𝑋⟶ℝ)
rrnprjdstle.g (𝜑𝐺:𝑋⟶ℝ)
rrnprjdstle.i (𝜑𝐼𝑋)
rrnprjdstle.d 𝐷 = (dist‘(ℝ^‘𝑋))
Assertion
Ref Expression
rrnprjdstle (𝜑 → (abs‘((𝐹𝐼) − (𝐺𝐼))) ≤ (𝐹𝐷𝐺))

Proof of Theorem rrnprjdstle
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 rrnprjdstle.f . . . . 5 (𝜑𝐹:𝑋⟶ℝ)
2 rrnprjdstle.i . . . . 5 (𝜑𝐼𝑋)
31, 2ffvelcdmd 7039 . . . 4 (𝜑 → (𝐹𝐼) ∈ ℝ)
4 rrnprjdstle.g . . . . 5 (𝜑𝐺:𝑋⟶ℝ)
54, 2ffvelcdmd 7039 . . . 4 (𝜑 → (𝐺𝐼) ∈ ℝ)
6 eqid 2729 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
76remetdval 24710 . . . 4 (((𝐹𝐼) ∈ ℝ ∧ (𝐺𝐼) ∈ ℝ) → ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)) = (abs‘((𝐹𝐼) − (𝐺𝐼))))
83, 5, 7syl2anc 584 . . 3 (𝜑 → ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)) = (abs‘((𝐹𝐼) − (𝐺𝐼))))
98eqcomd 2735 . 2 (𝜑 → (abs‘((𝐹𝐼) − (𝐺𝐼))) = ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)))
10 rrnprjdstle.x . . 3 (𝜑𝑋 ∈ Fin)
11 reex 11135 . . . . . . 7 ℝ ∈ V
1211a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
1312, 10elmapd 8790 . . . . 5 (𝜑 → (𝐹 ∈ (ℝ ↑m 𝑋) ↔ 𝐹:𝑋⟶ℝ))
141, 13mpbird 257 . . . 4 (𝜑𝐹 ∈ (ℝ ↑m 𝑋))
15 eqid 2729 . . . . . 6 (ℝ^‘𝑋) = (ℝ^‘𝑋)
16 eqid 2729 . . . . . 6 (Base‘(ℝ^‘𝑋)) = (Base‘(ℝ^‘𝑋))
1710, 15, 16rrxbasefi 25343 . . . . 5 (𝜑 → (Base‘(ℝ^‘𝑋)) = (ℝ ↑m 𝑋))
1815, 16rrxbase 25321 . . . . . 6 (𝑋 ∈ Fin → (Base‘(ℝ^‘𝑋)) = { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
1910, 18syl 17 . . . . 5 (𝜑 → (Base‘(ℝ^‘𝑋)) = { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
2017, 19eqtr3d 2766 . . . 4 (𝜑 → (ℝ ↑m 𝑋) = { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
2114, 20eleqtrd 2830 . . 3 (𝜑𝐹 ∈ { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
2212, 10elmapd 8790 . . . . 5 (𝜑 → (𝐺 ∈ (ℝ ↑m 𝑋) ↔ 𝐺:𝑋⟶ℝ))
234, 22mpbird 257 . . . 4 (𝜑𝐺 ∈ (ℝ ↑m 𝑋))
2423, 20eleqtrd 2830 . . 3 (𝜑𝐺 ∈ { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})
25 eqid 2729 . . . 4 { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0} = { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0}
26 rrnprjdstle.d . . . 4 𝐷 = (dist‘(ℝ^‘𝑋))
2725, 26, 6rrxdstprj1 25342 . . 3 (((𝑋 ∈ Fin ∧ 𝐼𝑋) ∧ (𝐹 ∈ { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0} ∧ 𝐺 ∈ { ∈ (ℝ ↑m 𝑋) ∣ finSupp 0})) → ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)) ≤ (𝐹𝐷𝐺))
2810, 2, 21, 24, 27syl22anc 838 . 2 (𝜑 → ((𝐹𝐼)((abs ∘ − ) ↾ (ℝ × ℝ))(𝐺𝐼)) ≤ (𝐹𝐷𝐺))
299, 28eqbrtrd 5124 1 (𝜑 → (abs‘((𝐹𝐼) − (𝐺𝐼))) ≤ (𝐹𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444   class class class wbr 5102   × cxp 5629  cres 5633  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895   finSupp cfsupp 9288  cr 11043  0cc0 11044  cle 11185  cmin 11381  abscabs 15176  Basecbs 17155  distcds 17205  ℝ^crrx 25316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-subrng 20466  df-subrg 20490  df-drng 20651  df-field 20652  df-staf 20759  df-srng 20760  df-lmod 20800  df-lss 20870  df-sra 21112  df-rgmod 21113  df-xmet 21289  df-met 21290  df-cnfld 21297  df-refld 21547  df-dsmm 21674  df-frlm 21689  df-nm 24503  df-tng 24505  df-tcph 25102  df-rrx 25318
This theorem is referenced by:  ioorrnopnlem  46295
  Copyright terms: Public domain W3C validator