Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndstprj2 Structured version   Visualization version   GIF version

Theorem rrndstprj2 35091
 Description: Bound on the distance between two points in Euclidean space given bounds on the distances in each coordinate. This theorem and rrndstprj1 35090 can be used to show that the supremum norm and Euclidean norm are equivalent. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1 𝑋 = (ℝ ↑m 𝐼)
rrndstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
rrndstprj2 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) < (𝑅 · (√‘(♯‘𝐼))))
Distinct variable groups:   𝑛,𝐺   𝑛,𝐼   𝑛,𝑀   𝑅,𝑛   𝑛,𝐹
Allowed substitution hint:   𝑋(𝑛)

Proof of Theorem rrndstprj2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1185 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐼 ∈ (Fin ∖ {∅}))
21eldifad 3946 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐼 ∈ Fin)
3 simpl2 1186 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐹𝑋)
4 simpl3 1187 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐺𝑋)
5 rrnval.1 . . . 4 𝑋 = (ℝ ↑m 𝐼)
65rrnmval 35088 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
72, 3, 4, 6syl3anc 1365 . 2 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
8 eldifsni 4714 . . . . . 6 (𝐼 ∈ (Fin ∖ {∅}) → 𝐼 ≠ ∅)
91, 8syl 17 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐼 ≠ ∅)
103, 5eleqtrdi 2921 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐹 ∈ (ℝ ↑m 𝐼))
11 elmapi 8420 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑m 𝐼) → 𝐹:𝐼⟶ℝ)
1210, 11syl 17 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐹:𝐼⟶ℝ)
1312ffvelrnda 6844 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
144, 5eleqtrdi 2921 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐺 ∈ (ℝ ↑m 𝐼))
15 elmapi 8420 . . . . . . . . 9 (𝐺 ∈ (ℝ ↑m 𝐼) → 𝐺:𝐼⟶ℝ)
1614, 15syl 17 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐺:𝐼⟶ℝ)
1716ffvelrnda 6844 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1813, 17resubcld 11060 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
1918resqcld 13603 . . . . 5 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
20 simprl 769 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝑅 ∈ ℝ+)
2120rpred 12423 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝑅 ∈ ℝ)
2221resqcld 13603 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅↑2) ∈ ℝ)
2322adantr 483 . . . . 5 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (𝑅↑2) ∈ ℝ)
24 absresq 14654 . . . . . . 7 (((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ → ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
2518, 24syl 17 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
26 rrndstprj1.1 . . . . . . . . . 10 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
2726remetdval 23389 . . . . . . . . 9 (((𝐹𝑘) ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → ((𝐹𝑘)𝑀(𝐺𝑘)) = (abs‘((𝐹𝑘) − (𝐺𝑘))))
2813, 17, 27syl2anc 586 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘)𝑀(𝐺𝑘)) = (abs‘((𝐹𝑘) − (𝐺𝑘))))
29 simprr 771 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)
30 fveq2 6663 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
31 fveq2 6663 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
3230, 31oveq12d 7166 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝐹𝑛)𝑀(𝐺𝑛)) = ((𝐹𝑘)𝑀(𝐺𝑘)))
3332breq1d 5067 . . . . . . . . . 10 (𝑛 = 𝑘 → (((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅 ↔ ((𝐹𝑘)𝑀(𝐺𝑘)) < 𝑅))
3433rspccva 3620 . . . . . . . . 9 ((∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅𝑘𝐼) → ((𝐹𝑘)𝑀(𝐺𝑘)) < 𝑅)
3529, 34sylan 582 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘)𝑀(𝐺𝑘)) < 𝑅)
3628, 35eqbrtrrd 5081 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑅)
3718recnd 10661 . . . . . . . . 9 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
3837abscld 14788 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (abs‘((𝐹𝑘) − (𝐺𝑘))) ∈ ℝ)
3921adantr 483 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 𝑅 ∈ ℝ)
4037absge0d 14796 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 0 ≤ (abs‘((𝐹𝑘) − (𝐺𝑘))))
4120rpge0d 12427 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ 𝑅)
4241adantr 483 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 0 ≤ 𝑅)
4338, 39, 40, 42lt2sqd 13611 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑅 ↔ ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) < (𝑅↑2)))
4436, 43mpbid 234 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) < (𝑅↑2))
4525, 44eqbrtrrd 5081 . . . . 5 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) < (𝑅↑2))
462, 9, 19, 23, 45fsumlt 15147 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) < Σ𝑘𝐼 (𝑅↑2))
472, 19fsumrecl 15083 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
4818sqge0d 13604 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
492, 19, 48fsumge0 15142 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
50 resqrtth 14607 . . . . 5 ((Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
5147, 49, 50syl2anc 586 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
52 hashnncl 13719 . . . . . . . . . . . 12 (𝐼 ∈ Fin → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
532, 52syl 17 . . . . . . . . . . 11 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
549, 53mpbird 259 . . . . . . . . . 10 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℕ)
5554nnrpd 12421 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℝ+)
5655rpred 12423 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℝ)
5755rpge0d 12427 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ (♯‘𝐼))
58 resqrtth 14607 . . . . . . . 8 (((♯‘𝐼) ∈ ℝ ∧ 0 ≤ (♯‘𝐼)) → ((√‘(♯‘𝐼))↑2) = (♯‘𝐼))
5956, 57, 58syl2anc 586 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘(♯‘𝐼))↑2) = (♯‘𝐼))
6059oveq2d 7164 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅↑2) · ((√‘(♯‘𝐼))↑2)) = ((𝑅↑2) · (♯‘𝐼)))
6122recnd 10661 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅↑2) ∈ ℂ)
6255rpcnd 12425 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℂ)
6361, 62mulcomd 10654 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅↑2) · (♯‘𝐼)) = ((♯‘𝐼) · (𝑅↑2)))
6460, 63eqtrd 2854 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅↑2) · ((√‘(♯‘𝐼))↑2)) = ((♯‘𝐼) · (𝑅↑2)))
6520rpcnd 12425 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝑅 ∈ ℂ)
6655rpsqrtcld 14763 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘(♯‘𝐼)) ∈ ℝ+)
6766rpcnd 12425 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘(♯‘𝐼)) ∈ ℂ)
6865, 67sqmuld 13514 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅 · (√‘(♯‘𝐼)))↑2) = ((𝑅↑2) · ((√‘(♯‘𝐼))↑2)))
69 fsumconst 15137 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑅↑2) ∈ ℂ) → Σ𝑘𝐼 (𝑅↑2) = ((♯‘𝐼) · (𝑅↑2)))
702, 61, 69syl2anc 586 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → Σ𝑘𝐼 (𝑅↑2) = ((♯‘𝐼) · (𝑅↑2)))
7164, 68, 703eqtr4d 2864 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅 · (√‘(♯‘𝐼)))↑2) = Σ𝑘𝐼 (𝑅↑2))
7246, 51, 713brtr4d 5089 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) < ((𝑅 · (√‘(♯‘𝐼)))↑2))
7347, 49resqrtcld 14769 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ ℝ)
7420, 66rpmulcld 12439 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅 · (√‘(♯‘𝐼))) ∈ ℝ+)
7574rpred 12423 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅 · (√‘(♯‘𝐼))) ∈ ℝ)
7647, 49sqrtge0d 14772 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
7774rpge0d 12427 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ (𝑅 · (√‘(♯‘𝐼))))
7873, 75, 76, 77lt2sqd 13611 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) < (𝑅 · (√‘(♯‘𝐼))) ↔ ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) < ((𝑅 · (√‘(♯‘𝐼)))↑2)))
7972, 78mpbird 259 . 2 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) < (𝑅 · (√‘(♯‘𝐼))))
807, 79eqbrtrd 5079 1 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) < (𝑅 · (√‘(♯‘𝐼))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3014  ∀wral 3136   ∖ cdif 3931  ∅c0 4289  {csn 4559   class class class wbr 5057   × cxp 5546   ↾ cres 5550   ∘ ccom 5552  ⟶wf 6344  ‘cfv 6348  (class class class)co 7148   ↑m cmap 8398  Fincfn 8501  ℂcc 10527  ℝcr 10528  0cc0 10529   · cmul 10534   < clt 10667   ≤ cle 10668   − cmin 10862  ℕcn 11630  2c2 11684  ℝ+crp 12381  ↑cexp 13421  ♯chash 13682  √csqrt 14584  abscabs 14585  Σcsu 15034  ℝncrrn 35085 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-rrn 35086 This theorem is referenced by:  rrncmslem  35092  rrnequiv  35095
 Copyright terms: Public domain W3C validator