| Step | Hyp | Ref
| Expression |
| 1 | | simpl1 1192 |
. . . 4
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 𝐼 ∈ (Fin ∖
{∅})) |
| 2 | 1 | eldifad 3943 |
. . 3
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 𝐼 ∈ Fin) |
| 3 | | simpl2 1193 |
. . 3
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 𝐹 ∈ 𝑋) |
| 4 | | simpl3 1194 |
. . 3
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 𝐺 ∈ 𝑋) |
| 5 | | rrnval.1 |
. . . 4
⊢ 𝑋 = (ℝ ↑m
𝐼) |
| 6 | 5 | rrnmval 37857 |
. . 3
⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹(ℝn‘𝐼)𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
| 7 | 2, 3, 4, 6 | syl3anc 1373 |
. 2
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (𝐹(ℝn‘𝐼)𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
| 8 | | eldifsni 4771 |
. . . . . 6
⊢ (𝐼 ∈ (Fin ∖ {∅})
→ 𝐼 ≠
∅) |
| 9 | 1, 8 | syl 17 |
. . . . 5
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 𝐼 ≠ ∅) |
| 10 | 3, 5 | eleqtrdi 2845 |
. . . . . . . . 9
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 𝐹 ∈ (ℝ ↑m 𝐼)) |
| 11 | | elmapi 8868 |
. . . . . . . . 9
⊢ (𝐹 ∈ (ℝ
↑m 𝐼)
→ 𝐹:𝐼⟶ℝ) |
| 12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 𝐹:𝐼⟶ℝ) |
| 13 | 12 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℝ) |
| 14 | 4, 5 | eleqtrdi 2845 |
. . . . . . . . 9
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 𝐺 ∈ (ℝ ↑m 𝐼)) |
| 15 | | elmapi 8868 |
. . . . . . . . 9
⊢ (𝐺 ∈ (ℝ
↑m 𝐼)
→ 𝐺:𝐼⟶ℝ) |
| 16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 𝐺:𝐼⟶ℝ) |
| 17 | 16 | ffvelcdmda 7079 |
. . . . . . 7
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℝ) |
| 18 | 13, 17 | resubcld 11670 |
. . . . . 6
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℝ) |
| 19 | 18 | resqcld 14148 |
. . . . 5
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ) |
| 20 | | simprl 770 |
. . . . . . . 8
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 𝑅 ∈
ℝ+) |
| 21 | 20 | rpred 13056 |
. . . . . . 7
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 𝑅 ∈ ℝ) |
| 22 | 21 | resqcld 14148 |
. . . . . 6
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (𝑅↑2) ∈ ℝ) |
| 23 | 22 | adantr 480 |
. . . . 5
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → (𝑅↑2) ∈ ℝ) |
| 24 | | absresq 15326 |
. . . . . . 7
⊢ (((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℝ → ((abs‘((𝐹‘𝑘) − (𝐺‘𝑘)))↑2) = (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 25 | 18, 24 | syl 17 |
. . . . . 6
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → ((abs‘((𝐹‘𝑘) − (𝐺‘𝑘)))↑2) = (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 26 | | rrndstprj1.1 |
. . . . . . . . . 10
⊢ 𝑀 = ((abs ∘ − )
↾ (ℝ × ℝ)) |
| 27 | 26 | remetdval 24733 |
. . . . . . . . 9
⊢ (((𝐹‘𝑘) ∈ ℝ ∧ (𝐺‘𝑘) ∈ ℝ) → ((𝐹‘𝑘)𝑀(𝐺‘𝑘)) = (abs‘((𝐹‘𝑘) − (𝐺‘𝑘)))) |
| 28 | 13, 17, 27 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → ((𝐹‘𝑘)𝑀(𝐺‘𝑘)) = (abs‘((𝐹‘𝑘) − (𝐺‘𝑘)))) |
| 29 | | simprr 772 |
. . . . . . . . 9
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → ∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅) |
| 30 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
| 31 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) |
| 32 | 30, 31 | oveq12d 7428 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) = ((𝐹‘𝑘)𝑀(𝐺‘𝑘))) |
| 33 | 32 | breq1d 5134 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → (((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅 ↔ ((𝐹‘𝑘)𝑀(𝐺‘𝑘)) < 𝑅)) |
| 34 | 33 | rspccva 3605 |
. . . . . . . . 9
⊢
((∀𝑛 ∈
𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅 ∧ 𝑘 ∈ 𝐼) → ((𝐹‘𝑘)𝑀(𝐺‘𝑘)) < 𝑅) |
| 35 | 29, 34 | sylan 580 |
. . . . . . . 8
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → ((𝐹‘𝑘)𝑀(𝐺‘𝑘)) < 𝑅) |
| 36 | 28, 35 | eqbrtrrd 5148 |
. . . . . . 7
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → (abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < 𝑅) |
| 37 | 18 | recnd 11268 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℂ) |
| 38 | 37 | abscld 15460 |
. . . . . . . 8
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → (abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) ∈ ℝ) |
| 39 | 21 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → 𝑅 ∈ ℝ) |
| 40 | 37 | absge0d 15468 |
. . . . . . . 8
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → 0 ≤ (abs‘((𝐹‘𝑘) − (𝐺‘𝑘)))) |
| 41 | 20 | rpge0d 13060 |
. . . . . . . . 9
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 0 ≤ 𝑅) |
| 42 | 41 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → 0 ≤ 𝑅) |
| 43 | 38, 39, 40, 42 | lt2sqd 14279 |
. . . . . . 7
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → ((abs‘((𝐹‘𝑘) − (𝐺‘𝑘))) < 𝑅 ↔ ((abs‘((𝐹‘𝑘) − (𝐺‘𝑘)))↑2) < (𝑅↑2))) |
| 44 | 36, 43 | mpbid 232 |
. . . . . 6
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → ((abs‘((𝐹‘𝑘) − (𝐺‘𝑘)))↑2) < (𝑅↑2)) |
| 45 | 25, 44 | eqbrtrrd 5148 |
. . . . 5
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) < (𝑅↑2)) |
| 46 | 2, 9, 19, 23, 45 | fsumlt 15821 |
. . . 4
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) < Σ𝑘 ∈ 𝐼 (𝑅↑2)) |
| 47 | 2, 19 | fsumrecl 15755 |
. . . . 5
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ) |
| 48 | 18 | sqge0d 14160 |
. . . . . 6
⊢ ((((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) ∧ 𝑘 ∈ 𝐼) → 0 ≤ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 49 | 2, 19, 48 | fsumge0 15816 |
. . . . 5
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 0 ≤ Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 50 | | resqrtth 15279 |
. . . . 5
⊢
((Σ𝑘 ∈
𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ ∧ 0 ≤
Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) →
((√‘Σ𝑘
∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2) = Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 51 | 47, 49, 50 | syl2anc 584 |
. . . 4
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → ((√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2) = Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) |
| 52 | | hashnncl 14389 |
. . . . . . . . . . . 12
⊢ (𝐼 ∈ Fin →
((♯‘𝐼) ∈
ℕ ↔ 𝐼 ≠
∅)) |
| 53 | 2, 52 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅)) |
| 54 | 9, 53 | mpbird 257 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℕ) |
| 55 | 54 | nnrpd 13054 |
. . . . . . . . 9
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (♯‘𝐼) ∈
ℝ+) |
| 56 | 55 | rpred 13056 |
. . . . . . . 8
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℝ) |
| 57 | 55 | rpge0d 13060 |
. . . . . . . 8
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 0 ≤ (♯‘𝐼)) |
| 58 | | resqrtth 15279 |
. . . . . . . 8
⊢
(((♯‘𝐼)
∈ ℝ ∧ 0 ≤ (♯‘𝐼)) →
((√‘(♯‘𝐼))↑2) = (♯‘𝐼)) |
| 59 | 56, 57, 58 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) →
((√‘(♯‘𝐼))↑2) = (♯‘𝐼)) |
| 60 | 59 | oveq2d 7426 |
. . . . . 6
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → ((𝑅↑2) ·
((√‘(♯‘𝐼))↑2)) = ((𝑅↑2) · (♯‘𝐼))) |
| 61 | 22 | recnd 11268 |
. . . . . . 7
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (𝑅↑2) ∈ ℂ) |
| 62 | 55 | rpcnd 13058 |
. . . . . . 7
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℂ) |
| 63 | 61, 62 | mulcomd 11261 |
. . . . . 6
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → ((𝑅↑2) · (♯‘𝐼)) = ((♯‘𝐼) · (𝑅↑2))) |
| 64 | 60, 63 | eqtrd 2771 |
. . . . 5
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → ((𝑅↑2) ·
((√‘(♯‘𝐼))↑2)) = ((♯‘𝐼) · (𝑅↑2))) |
| 65 | 20 | rpcnd 13058 |
. . . . . 6
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 𝑅 ∈ ℂ) |
| 66 | 55 | rpsqrtcld 15435 |
. . . . . . 7
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) →
(√‘(♯‘𝐼)) ∈
ℝ+) |
| 67 | 66 | rpcnd 13058 |
. . . . . 6
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) →
(√‘(♯‘𝐼)) ∈ ℂ) |
| 68 | 65, 67 | sqmuld 14181 |
. . . . 5
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → ((𝑅 ·
(√‘(♯‘𝐼)))↑2) = ((𝑅↑2) ·
((√‘(♯‘𝐼))↑2))) |
| 69 | | fsumconst 15811 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ (𝑅↑2) ∈ ℂ) →
Σ𝑘 ∈ 𝐼 (𝑅↑2) = ((♯‘𝐼) · (𝑅↑2))) |
| 70 | 2, 61, 69 | syl2anc 584 |
. . . . 5
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → Σ𝑘 ∈ 𝐼 (𝑅↑2) = ((♯‘𝐼) · (𝑅↑2))) |
| 71 | 64, 68, 70 | 3eqtr4d 2781 |
. . . 4
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → ((𝑅 ·
(√‘(♯‘𝐼)))↑2) = Σ𝑘 ∈ 𝐼 (𝑅↑2)) |
| 72 | 46, 51, 71 | 3brtr4d 5156 |
. . 3
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → ((√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2) < ((𝑅 ·
(√‘(♯‘𝐼)))↑2)) |
| 73 | 47, 49 | resqrtcld 15441 |
. . . 4
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) ∈ ℝ) |
| 74 | 20, 66 | rpmulcld 13072 |
. . . . 5
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (𝑅 ·
(√‘(♯‘𝐼))) ∈
ℝ+) |
| 75 | 74 | rpred 13056 |
. . . 4
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (𝑅 ·
(√‘(♯‘𝐼))) ∈ ℝ) |
| 76 | 47, 49 | sqrtge0d 15444 |
. . . 4
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 0 ≤ (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) |
| 77 | 74 | rpge0d 13060 |
. . . 4
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → 0 ≤ (𝑅 ·
(√‘(♯‘𝐼)))) |
| 78 | 73, 75, 76, 77 | lt2sqd 14279 |
. . 3
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → ((√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) < (𝑅 ·
(√‘(♯‘𝐼))) ↔ ((√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2) < ((𝑅 ·
(√‘(♯‘𝐼)))↑2))) |
| 79 | 72, 78 | mpbird 257 |
. 2
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) < (𝑅 ·
(√‘(♯‘𝐼)))) |
| 80 | 7, 79 | eqbrtrd 5146 |
1
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) ∧ (𝑅 ∈ ℝ+ ∧
∀𝑛 ∈ 𝐼 ((𝐹‘𝑛)𝑀(𝐺‘𝑛)) < 𝑅)) → (𝐹(ℝn‘𝐼)𝐺) < (𝑅 ·
(√‘(♯‘𝐼)))) |