Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndstprj2 Structured version   Visualization version   GIF version

Theorem rrndstprj2 37860
Description: Bound on the distance between two points in Euclidean space given bounds on the distances in each coordinate. This theorem and rrndstprj1 37859 can be used to show that the supremum norm and Euclidean norm are equivalent. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1 𝑋 = (ℝ ↑m 𝐼)
rrndstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
rrndstprj2 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) < (𝑅 · (√‘(♯‘𝐼))))
Distinct variable groups:   𝑛,𝐺   𝑛,𝐼   𝑛,𝑀   𝑅,𝑛   𝑛,𝐹
Allowed substitution hint:   𝑋(𝑛)

Proof of Theorem rrndstprj2
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐼 ∈ (Fin ∖ {∅}))
21eldifad 3943 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐼 ∈ Fin)
3 simpl2 1193 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐹𝑋)
4 simpl3 1194 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐺𝑋)
5 rrnval.1 . . . 4 𝑋 = (ℝ ↑m 𝐼)
65rrnmval 37857 . . 3 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
72, 3, 4, 6syl3anc 1373 . 2 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
8 eldifsni 4771 . . . . . 6 (𝐼 ∈ (Fin ∖ {∅}) → 𝐼 ≠ ∅)
91, 8syl 17 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐼 ≠ ∅)
103, 5eleqtrdi 2845 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐹 ∈ (ℝ ↑m 𝐼))
11 elmapi 8868 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑m 𝐼) → 𝐹:𝐼⟶ℝ)
1210, 11syl 17 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐹:𝐼⟶ℝ)
1312ffvelcdmda 7079 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
144, 5eleqtrdi 2845 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐺 ∈ (ℝ ↑m 𝐼))
15 elmapi 8868 . . . . . . . . 9 (𝐺 ∈ (ℝ ↑m 𝐼) → 𝐺:𝐼⟶ℝ)
1614, 15syl 17 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝐺:𝐼⟶ℝ)
1716ffvelcdmda 7079 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
1813, 17resubcld 11670 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
1918resqcld 14148 . . . . 5 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
20 simprl 770 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝑅 ∈ ℝ+)
2120rpred 13056 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝑅 ∈ ℝ)
2221resqcld 14148 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅↑2) ∈ ℝ)
2322adantr 480 . . . . 5 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (𝑅↑2) ∈ ℝ)
24 absresq 15326 . . . . . . 7 (((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ → ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
2518, 24syl 17 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) = (((𝐹𝑘) − (𝐺𝑘))↑2))
26 rrndstprj1.1 . . . . . . . . . 10 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
2726remetdval 24733 . . . . . . . . 9 (((𝐹𝑘) ∈ ℝ ∧ (𝐺𝑘) ∈ ℝ) → ((𝐹𝑘)𝑀(𝐺𝑘)) = (abs‘((𝐹𝑘) − (𝐺𝑘))))
2813, 17, 27syl2anc 584 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘)𝑀(𝐺𝑘)) = (abs‘((𝐹𝑘) − (𝐺𝑘))))
29 simprr 772 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)
30 fveq2 6881 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
31 fveq2 6881 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
3230, 31oveq12d 7428 . . . . . . . . . . 11 (𝑛 = 𝑘 → ((𝐹𝑛)𝑀(𝐺𝑛)) = ((𝐹𝑘)𝑀(𝐺𝑘)))
3332breq1d 5134 . . . . . . . . . 10 (𝑛 = 𝑘 → (((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅 ↔ ((𝐹𝑘)𝑀(𝐺𝑘)) < 𝑅))
3433rspccva 3605 . . . . . . . . 9 ((∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅𝑘𝐼) → ((𝐹𝑘)𝑀(𝐺𝑘)) < 𝑅)
3529, 34sylan 580 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘)𝑀(𝐺𝑘)) < 𝑅)
3628, 35eqbrtrrd 5148 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑅)
3718recnd 11268 . . . . . . . . 9 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℂ)
3837abscld 15460 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (abs‘((𝐹𝑘) − (𝐺𝑘))) ∈ ℝ)
3921adantr 480 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 𝑅 ∈ ℝ)
4037absge0d 15468 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 0 ≤ (abs‘((𝐹𝑘) − (𝐺𝑘))))
4120rpge0d 13060 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ 𝑅)
4241adantr 480 . . . . . . . 8 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 0 ≤ 𝑅)
4338, 39, 40, 42lt2sqd 14279 . . . . . . 7 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((abs‘((𝐹𝑘) − (𝐺𝑘))) < 𝑅 ↔ ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) < (𝑅↑2)))
4436, 43mpbid 232 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → ((abs‘((𝐹𝑘) − (𝐺𝑘)))↑2) < (𝑅↑2))
4525, 44eqbrtrrd 5148 . . . . 5 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) < (𝑅↑2))
462, 9, 19, 23, 45fsumlt 15821 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) < Σ𝑘𝐼 (𝑅↑2))
472, 19fsumrecl 15755 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
4818sqge0d 14160 . . . . . 6 ((((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) ∧ 𝑘𝐼) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
492, 19, 48fsumge0 15816 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
50 resqrtth 15279 . . . . 5 ((Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
5147, 49, 50syl2anc 584 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
52 hashnncl 14389 . . . . . . . . . . . 12 (𝐼 ∈ Fin → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
532, 52syl 17 . . . . . . . . . . 11 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((♯‘𝐼) ∈ ℕ ↔ 𝐼 ≠ ∅))
549, 53mpbird 257 . . . . . . . . . 10 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℕ)
5554nnrpd 13054 . . . . . . . . 9 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℝ+)
5655rpred 13056 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℝ)
5755rpge0d 13060 . . . . . . . 8 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ (♯‘𝐼))
58 resqrtth 15279 . . . . . . . 8 (((♯‘𝐼) ∈ ℝ ∧ 0 ≤ (♯‘𝐼)) → ((√‘(♯‘𝐼))↑2) = (♯‘𝐼))
5956, 57, 58syl2anc 584 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘(♯‘𝐼))↑2) = (♯‘𝐼))
6059oveq2d 7426 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅↑2) · ((√‘(♯‘𝐼))↑2)) = ((𝑅↑2) · (♯‘𝐼)))
6122recnd 11268 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅↑2) ∈ ℂ)
6255rpcnd 13058 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (♯‘𝐼) ∈ ℂ)
6361, 62mulcomd 11261 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅↑2) · (♯‘𝐼)) = ((♯‘𝐼) · (𝑅↑2)))
6460, 63eqtrd 2771 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅↑2) · ((√‘(♯‘𝐼))↑2)) = ((♯‘𝐼) · (𝑅↑2)))
6520rpcnd 13058 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 𝑅 ∈ ℂ)
6655rpsqrtcld 15435 . . . . . . 7 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘(♯‘𝐼)) ∈ ℝ+)
6766rpcnd 13058 . . . . . 6 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘(♯‘𝐼)) ∈ ℂ)
6865, 67sqmuld 14181 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅 · (√‘(♯‘𝐼)))↑2) = ((𝑅↑2) · ((√‘(♯‘𝐼))↑2)))
69 fsumconst 15811 . . . . . 6 ((𝐼 ∈ Fin ∧ (𝑅↑2) ∈ ℂ) → Σ𝑘𝐼 (𝑅↑2) = ((♯‘𝐼) · (𝑅↑2)))
702, 61, 69syl2anc 584 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → Σ𝑘𝐼 (𝑅↑2) = ((♯‘𝐼) · (𝑅↑2)))
7164, 68, 703eqtr4d 2781 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((𝑅 · (√‘(♯‘𝐼)))↑2) = Σ𝑘𝐼 (𝑅↑2))
7246, 51, 713brtr4d 5156 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) < ((𝑅 · (√‘(♯‘𝐼)))↑2))
7347, 49resqrtcld 15441 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ ℝ)
7420, 66rpmulcld 13072 . . . . 5 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅 · (√‘(♯‘𝐼))) ∈ ℝ+)
7574rpred 13056 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝑅 · (√‘(♯‘𝐼))) ∈ ℝ)
7647, 49sqrtge0d 15444 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
7774rpge0d 13060 . . . 4 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → 0 ≤ (𝑅 · (√‘(♯‘𝐼))))
7873, 75, 76, 77lt2sqd 14279 . . 3 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) < (𝑅 · (√‘(♯‘𝐼))) ↔ ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) < ((𝑅 · (√‘(♯‘𝐼)))↑2)))
7972, 78mpbird 257 . 2 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) < (𝑅 · (√‘(♯‘𝐼))))
807, 79eqbrtrd 5146 1 (((𝐼 ∈ (Fin ∖ {∅}) ∧ 𝐹𝑋𝐺𝑋) ∧ (𝑅 ∈ ℝ+ ∧ ∀𝑛𝐼 ((𝐹𝑛)𝑀(𝐺𝑛)) < 𝑅)) → (𝐹(ℝn𝐼)𝐺) < (𝑅 · (√‘(♯‘𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  cdif 3928  c0 4313  {csn 4606   class class class wbr 5124   × cxp 5657  cres 5661  ccom 5663  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  Fincfn 8964  cc 11132  cr 11133  0cc0 11134   · cmul 11139   < clt 11274  cle 11275  cmin 11471  cn 12245  2c2 12300  +crp 13013  cexp 14084  chash 14353  csqrt 15257  abscabs 15258  Σcsu 15707  ncrrn 37854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-rrn 37855
This theorem is referenced by:  rrncmslem  37861  rrnequiv  37864
  Copyright terms: Public domain W3C validator