Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndstprj1 Structured version   Visualization version   GIF version

Theorem rrndstprj1 35268
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1 𝑋 = (ℝ ↑m 𝐼)
rrndstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
rrndstprj1 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹(ℝn𝐼)𝐺))

Proof of Theorem rrndstprj1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐼 ∈ Fin)
2 simprl 770 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
3 rrnval.1 . . . . . . . . . 10 𝑋 = (ℝ ↑m 𝐼)
42, 3eleqtrdi 2900 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 ∈ (ℝ ↑m 𝐼))
5 elmapi 8411 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑m 𝐼) → 𝐹:𝐼⟶ℝ)
64, 5syl 17 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹:𝐼⟶ℝ)
76ffvelrnda 6828 . . . . . . 7 ((((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
8 simprr 772 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
98, 3eleqtrdi 2900 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 ∈ (ℝ ↑m 𝐼))
10 elmapi 8411 . . . . . . . . 9 (𝐺 ∈ (ℝ ↑m 𝐼) → 𝐺:𝐼⟶ℝ)
119, 10syl 17 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺:𝐼⟶ℝ)
1211ffvelrnda 6828 . . . . . . 7 ((((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
137, 12resubcld 11057 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
1413resqcld 13607 . . . . 5 ((((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
1513sqge0d 13608 . . . . 5 ((((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
16 fveq2 6645 . . . . . . 7 (𝑘 = 𝐴 → (𝐹𝑘) = (𝐹𝐴))
17 fveq2 6645 . . . . . . 7 (𝑘 = 𝐴 → (𝐺𝑘) = (𝐺𝐴))
1816, 17oveq12d 7153 . . . . . 6 (𝑘 = 𝐴 → ((𝐹𝑘) − (𝐺𝑘)) = ((𝐹𝐴) − (𝐺𝐴)))
1918oveq1d 7150 . . . . 5 (𝑘 = 𝐴 → (((𝐹𝑘) − (𝐺𝑘))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
20 simplr 768 . . . . 5 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴𝐼)
211, 14, 15, 19, 20fsumge1 15144 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (((𝐹𝐴) − (𝐺𝐴))↑2) ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
226, 20ffvelrnd 6829 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐴) ∈ ℝ)
2311, 20ffvelrnd 6829 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺𝐴) ∈ ℝ)
2422, 23resubcld 11057 . . . . 5 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ)
25 absresq 14654 . . . . 5 (((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
2624, 25syl 17 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
271, 14fsumrecl 15083 . . . . 5 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
281, 14, 15fsumge0 15142 . . . . 5 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
29 resqrtth 14607 . . . . 5 ((Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
3027, 28, 29syl2anc 587 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
3121, 26, 303brtr4d 5062 . . 3 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2))
3224recnd 10658 . . . . 5 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℂ)
3332abscld 14788 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ∈ ℝ)
3427, 28resqrtcld 14769 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ ℝ)
3532absge0d 14796 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (abs‘((𝐹𝐴) − (𝐺𝐴))))
3627, 28sqrtge0d 14772 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
3733, 34, 35, 36le2sqd 13616 . . 3 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) ↔ ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2)))
3831, 37mpbird 260 . 2 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
39 rrndstprj1.1 . . . 4 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
4039remetdval 23394 . . 3 (((𝐹𝐴) ∈ ℝ ∧ (𝐺𝐴) ∈ ℝ) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
4122, 23, 40syl2anc 587 . 2 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
423rrnmval 35266 . . . 4 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
43423expb 1117 . . 3 ((𝐼 ∈ Fin ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
4443adantlr 714 . 2 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
4538, 41, 443brtr4d 5062 1 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹(ℝn𝐼)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111   class class class wbr 5030   × cxp 5517  cres 5521  ccom 5523  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492  cr 10525  0cc0 10526  cle 10665  cmin 10859  2c2 11680  cexp 13425  csqrt 14584  abscabs 14585  Σcsu 15034  ncrrn 35263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-rrn 35264
This theorem is referenced by:  rrncmslem  35270  rrnequiv  35273
  Copyright terms: Public domain W3C validator