| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpll 767 | . . . . 5
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐼 ∈ Fin) | 
| 2 |  | simprl 771 | . . . . . . . . . 10
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐹 ∈ 𝑋) | 
| 3 |  | rrnval.1 | . . . . . . . . . 10
⊢ 𝑋 = (ℝ ↑m
𝐼) | 
| 4 | 2, 3 | eleqtrdi 2851 | . . . . . . . . 9
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐹 ∈ (ℝ ↑m 𝐼)) | 
| 5 |  | elmapi 8889 | . . . . . . . . 9
⊢ (𝐹 ∈ (ℝ
↑m 𝐼)
→ 𝐹:𝐼⟶ℝ) | 
| 6 | 4, 5 | syl 17 | . . . . . . . 8
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐹:𝐼⟶ℝ) | 
| 7 | 6 | ffvelcdmda 7104 | . . . . . . 7
⊢ ((((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ ℝ) | 
| 8 |  | simprr 773 | . . . . . . . . . 10
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐺 ∈ 𝑋) | 
| 9 | 8, 3 | eleqtrdi 2851 | . . . . . . . . 9
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐺 ∈ (ℝ ↑m 𝐼)) | 
| 10 |  | elmapi 8889 | . . . . . . . . 9
⊢ (𝐺 ∈ (ℝ
↑m 𝐼)
→ 𝐺:𝐼⟶ℝ) | 
| 11 | 9, 10 | syl 17 | . . . . . . . 8
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐺:𝐼⟶ℝ) | 
| 12 | 11 | ffvelcdmda 7104 | . . . . . . 7
⊢ ((((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ ℝ) | 
| 13 | 7, 12 | resubcld 11691 | . . . . . 6
⊢ ((((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → ((𝐹‘𝑘) − (𝐺‘𝑘)) ∈ ℝ) | 
| 14 | 13 | resqcld 14165 | . . . . 5
⊢ ((((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ) | 
| 15 | 13 | sqge0d 14177 | . . . . 5
⊢ ((((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) ∧ 𝑘 ∈ 𝐼) → 0 ≤ (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) | 
| 16 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑘 = 𝐴 → (𝐹‘𝑘) = (𝐹‘𝐴)) | 
| 17 |  | fveq2 6906 | . . . . . . 7
⊢ (𝑘 = 𝐴 → (𝐺‘𝑘) = (𝐺‘𝐴)) | 
| 18 | 16, 17 | oveq12d 7449 | . . . . . 6
⊢ (𝑘 = 𝐴 → ((𝐹‘𝑘) − (𝐺‘𝑘)) = ((𝐹‘𝐴) − (𝐺‘𝐴))) | 
| 19 | 18 | oveq1d 7446 | . . . . 5
⊢ (𝑘 = 𝐴 → (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) = (((𝐹‘𝐴) − (𝐺‘𝐴))↑2)) | 
| 20 |  | simplr 769 | . . . . 5
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 𝐴 ∈ 𝐼) | 
| 21 | 1, 14, 15, 19, 20 | fsumge1 15833 | . . . 4
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (((𝐹‘𝐴) − (𝐺‘𝐴))↑2) ≤ Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) | 
| 22 | 6, 20 | ffvelcdmd 7105 | . . . . . 6
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹‘𝐴) ∈ ℝ) | 
| 23 | 11, 20 | ffvelcdmd 7105 | . . . . . 6
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐺‘𝐴) ∈ ℝ) | 
| 24 | 22, 23 | resubcld 11691 | . . . . 5
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴) − (𝐺‘𝐴)) ∈ ℝ) | 
| 25 |  | absresq 15341 | . . . . 5
⊢ (((𝐹‘𝐴) − (𝐺‘𝐴)) ∈ ℝ → ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))↑2) = (((𝐹‘𝐴) − (𝐺‘𝐴))↑2)) | 
| 26 | 24, 25 | syl 17 | . . . 4
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))↑2) = (((𝐹‘𝐴) − (𝐺‘𝐴))↑2)) | 
| 27 | 1, 14 | fsumrecl 15770 | . . . . 5
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ) | 
| 28 | 1, 14, 15 | fsumge0 15831 | . . . . 5
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 0 ≤ Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) | 
| 29 |  | resqrtth 15294 | . . . . 5
⊢
((Σ𝑘 ∈
𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2) ∈ ℝ ∧ 0 ≤
Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) →
((√‘Σ𝑘
∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2) = Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) | 
| 30 | 27, 28, 29 | syl2anc 584 | . . . 4
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2) = Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) | 
| 31 | 21, 26, 30 | 3brtr4d 5175 | . . 3
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))↑2) ≤
((√‘Σ𝑘
∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2)) | 
| 32 | 24 | recnd 11289 | . . . . 5
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴) − (𝐺‘𝐴)) ∈ ℂ) | 
| 33 | 32 | abscld 15475 | . . . 4
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (abs‘((𝐹‘𝐴) − (𝐺‘𝐴))) ∈ ℝ) | 
| 34 | 27, 28 | resqrtcld 15456 | . . . 4
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) ∈ ℝ) | 
| 35 | 32 | absge0d 15483 | . . . 4
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 0 ≤ (abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))) | 
| 36 | 27, 28 | sqrtge0d 15459 | . . . 4
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → 0 ≤ (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | 
| 37 | 33, 34, 35, 36 | le2sqd 14296 | . . 3
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴))) ≤ (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2)) ↔ ((abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))↑2) ≤
((√‘Σ𝑘
∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))↑2))) | 
| 38 | 31, 37 | mpbird 257 | . 2
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (abs‘((𝐹‘𝐴) − (𝐺‘𝐴))) ≤ (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | 
| 39 |  | rrndstprj1.1 | . . . 4
⊢ 𝑀 = ((abs ∘ − )
↾ (ℝ × ℝ)) | 
| 40 | 39 | remetdval 24810 | . . 3
⊢ (((𝐹‘𝐴) ∈ ℝ ∧ (𝐺‘𝐴) ∈ ℝ) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) = (abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))) | 
| 41 | 22, 23, 40 | syl2anc 584 | . 2
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) = (abs‘((𝐹‘𝐴) − (𝐺‘𝐴)))) | 
| 42 | 3 | rrnmval 37835 | . . . 4
⊢ ((𝐼 ∈ Fin ∧ 𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋) → (𝐹(ℝn‘𝐼)𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | 
| 43 | 42 | 3expb 1121 | . . 3
⊢ ((𝐼 ∈ Fin ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹(ℝn‘𝐼)𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | 
| 44 | 43 | adantlr 715 | . 2
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → (𝐹(ℝn‘𝐼)𝐺) = (√‘Σ𝑘 ∈ 𝐼 (((𝐹‘𝑘) − (𝐺‘𝑘))↑2))) | 
| 45 | 38, 41, 44 | 3brtr4d 5175 | 1
⊢ (((𝐼 ∈ Fin ∧ 𝐴 ∈ 𝐼) ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹‘𝐴)𝑀(𝐺‘𝐴)) ≤ (𝐹(ℝn‘𝐼)𝐺)) |