Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndstprj1 Structured version   Visualization version   GIF version

Theorem rrndstprj1 35988
Description: The distance between two points in Euclidean space is greater than the distance between the projections onto one coordinate. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1 𝑋 = (ℝ ↑m 𝐼)
rrndstprj1.1 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
Assertion
Ref Expression
rrndstprj1 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹(ℝn𝐼)𝐺))

Proof of Theorem rrndstprj1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpll 764 . . . . 5 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐼 ∈ Fin)
2 simprl 768 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹𝑋)
3 rrnval.1 . . . . . . . . . 10 𝑋 = (ℝ ↑m 𝐼)
42, 3eleqtrdi 2849 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹 ∈ (ℝ ↑m 𝐼))
5 elmapi 8637 . . . . . . . . 9 (𝐹 ∈ (ℝ ↑m 𝐼) → 𝐹:𝐼⟶ℝ)
64, 5syl 17 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐹:𝐼⟶ℝ)
76ffvelrnda 6961 . . . . . . 7 ((((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐹𝑘) ∈ ℝ)
8 simprr 770 . . . . . . . . . 10 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺𝑋)
98, 3eleqtrdi 2849 . . . . . . . . 9 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺 ∈ (ℝ ↑m 𝐼))
10 elmapi 8637 . . . . . . . . 9 (𝐺 ∈ (ℝ ↑m 𝐼) → 𝐺:𝐼⟶ℝ)
119, 10syl 17 . . . . . . . 8 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐺:𝐼⟶ℝ)
1211ffvelrnda 6961 . . . . . . 7 ((((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ ℝ)
137, 12resubcld 11403 . . . . . 6 ((((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
1413resqcld 13965 . . . . 5 ((((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
1513sqge0d 13966 . . . . 5 ((((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) ∧ 𝑘𝐼) → 0 ≤ (((𝐹𝑘) − (𝐺𝑘))↑2))
16 fveq2 6774 . . . . . . 7 (𝑘 = 𝐴 → (𝐹𝑘) = (𝐹𝐴))
17 fveq2 6774 . . . . . . 7 (𝑘 = 𝐴 → (𝐺𝑘) = (𝐺𝐴))
1816, 17oveq12d 7293 . . . . . 6 (𝑘 = 𝐴 → ((𝐹𝑘) − (𝐺𝑘)) = ((𝐹𝐴) − (𝐺𝐴)))
1918oveq1d 7290 . . . . 5 (𝑘 = 𝐴 → (((𝐹𝑘) − (𝐺𝑘))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
20 simplr 766 . . . . 5 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 𝐴𝐼)
211, 14, 15, 19, 20fsumge1 15509 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (((𝐹𝐴) − (𝐺𝐴))↑2) ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
226, 20ffvelrnd 6962 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹𝐴) ∈ ℝ)
2311, 20ffvelrnd 6962 . . . . . 6 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐺𝐴) ∈ ℝ)
2422, 23resubcld 11403 . . . . 5 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ)
25 absresq 15014 . . . . 5 (((𝐹𝐴) − (𝐺𝐴)) ∈ ℝ → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
2624, 25syl 17 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) = (((𝐹𝐴) − (𝐺𝐴))↑2))
271, 14fsumrecl 15446 . . . . 5 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ)
281, 14, 15fsumge0 15507 . . . . 5 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
29 resqrtth 14967 . . . . 5 ((Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2) ∈ ℝ ∧ 0 ≤ Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
3027, 28, 29syl2anc 584 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2) = Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))
3121, 26, 303brtr4d 5106 . . 3 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2))
3224recnd 11003 . . . . 5 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴) − (𝐺𝐴)) ∈ ℂ)
3332abscld 15148 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ∈ ℝ)
3427, 28resqrtcld 15129 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) ∈ ℝ)
3532absge0d 15156 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (abs‘((𝐹𝐴) − (𝐺𝐴))))
3627, 28sqrtge0d 15132 . . . 4 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → 0 ≤ (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
3733, 34, 35, 36le2sqd 13974 . . 3 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)) ↔ ((abs‘((𝐹𝐴) − (𝐺𝐴)))↑2) ≤ ((√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2))↑2)))
3831, 37mpbird 256 . 2 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (abs‘((𝐹𝐴) − (𝐺𝐴))) ≤ (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
39 rrndstprj1.1 . . . 4 𝑀 = ((abs ∘ − ) ↾ (ℝ × ℝ))
4039remetdval 23952 . . 3 (((𝐹𝐴) ∈ ℝ ∧ (𝐺𝐴) ∈ ℝ) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
4122, 23, 40syl2anc 584 . 2 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) = (abs‘((𝐹𝐴) − (𝐺𝐴))))
423rrnmval 35986 . . . 4 ((𝐼 ∈ Fin ∧ 𝐹𝑋𝐺𝑋) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
43423expb 1119 . . 3 ((𝐼 ∈ Fin ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
4443adantlr 712 . 2 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → (𝐹(ℝn𝐼)𝐺) = (√‘Σ𝑘𝐼 (((𝐹𝑘) − (𝐺𝑘))↑2)))
4538, 41, 443brtr4d 5106 1 (((𝐼 ∈ Fin ∧ 𝐴𝐼) ∧ (𝐹𝑋𝐺𝑋)) → ((𝐹𝐴)𝑀(𝐺𝐴)) ≤ (𝐹(ℝn𝐼)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106   class class class wbr 5074   × cxp 5587  cres 5591  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  cr 10870  0cc0 10871  cle 11010  cmin 11205  2c2 12028  cexp 13782  csqrt 14944  abscabs 14945  Σcsu 15397  ncrrn 35983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-rrn 35984
This theorem is referenced by:  rrncmslem  35990  rrnequiv  35993
  Copyright terms: Public domain W3C validator