Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snvonmbl Structured version   Visualization version   GIF version

Theorem snvonmbl 46641
Description: A n-dimensional singleton is Lebesgue measurable. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
snvonmbl.1 (𝜑𝑋 ∈ Fin)
snvonmbl.2 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
Assertion
Ref Expression
snvonmbl (𝜑 → {𝐴} ∈ dom (voln‘𝑋))

Proof of Theorem snvonmbl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 snvonmbl.2 . . . 4 (𝜑𝐴 ∈ (ℝ ↑m 𝑋))
21rrxsnicc 46255 . . 3 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
32eqcomd 2740 . 2 (𝜑 → {𝐴} = X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
4 snvonmbl.1 . . 3 (𝜑𝑋 ∈ Fin)
5 eqid 2734 . . 3 dom (voln‘𝑋) = dom (voln‘𝑋)
6 elmapi 8887 . . . 4 (𝐴 ∈ (ℝ ↑m 𝑋) → 𝐴:𝑋⟶ℝ)
71, 6syl 17 . . 3 (𝜑𝐴:𝑋⟶ℝ)
84, 5, 7, 7iccvonmbl 46634 . 2 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) ∈ dom (voln‘𝑋))
93, 8eqeltrd 2838 1 (𝜑 → {𝐴} ∈ dom (voln‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  {csn 4630  dom cdm 5688  wf 6558  cfv 6562  (class class class)co 7430  m cmap 8864  Xcixp 8935  Fincfn 8983  cr 11151  [,]cicc 13386  volncvoln 46493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cc 10472  ax-ac2 10500  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-disj 5115  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-acn 9979  df-ac 10153  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-rlim 15521  df-sum 15719  df-prod 15936  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-prds 17493  df-pws 17495  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-subg 19153  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-dvr 20417  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-drng 20747  df-field 20748  df-abv 20826  df-staf 20856  df-srng 20857  df-lmod 20876  df-lss 20947  df-lmhm 21038  df-lvec 21119  df-sra 21189  df-rgmod 21190  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-cnfld 21382  df-refld 21640  df-phl 21661  df-dsmm 21769  df-frlm 21784  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cmp 23410  df-xms 24345  df-ms 24346  df-nm 24610  df-ngp 24611  df-tng 24612  df-nrg 24613  df-nlm 24614  df-clm 25109  df-cph 25215  df-tcph 25216  df-rrx 25432  df-ovol 25512  df-vol 25513  df-salg 46264  df-sumge0 46318  df-mea 46405  df-ome 46445  df-caragen 46447  df-ovoln 46492  df-voln 46494
This theorem is referenced by:  ctvonmbl  46644  vonsn  46646  vonct  46648
  Copyright terms: Public domain W3C validator