![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snvonmbl | Structured version Visualization version GIF version |
Description: A n-dimensional singleton is Lebesgue measurable. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
snvonmbl.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
snvonmbl.2 | ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) |
Ref | Expression |
---|---|
snvonmbl | ⊢ (𝜑 → {𝐴} ∈ dom (voln‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snvonmbl.2 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) | |
2 | 1 | rrxsnicc 46255 | . . 3 ⊢ (𝜑 → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)) = {𝐴}) |
3 | 2 | eqcomd 2740 | . 2 ⊢ (𝜑 → {𝐴} = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘))) |
4 | snvonmbl.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
5 | eqid 2734 | . . 3 ⊢ dom (voln‘𝑋) = dom (voln‘𝑋) | |
6 | elmapi 8887 | . . . 4 ⊢ (𝐴 ∈ (ℝ ↑m 𝑋) → 𝐴:𝑋⟶ℝ) | |
7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
8 | 4, 5, 7, 7 | iccvonmbl 46634 | . 2 ⊢ (𝜑 → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)) ∈ dom (voln‘𝑋)) |
9 | 3, 8 | eqeltrd 2838 | 1 ⊢ (𝜑 → {𝐴} ∈ dom (voln‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 {csn 4630 dom cdm 5688 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 Xcixp 8935 Fincfn 8983 ℝcr 11151 [,]cicc 13386 volncvoln 46493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cc 10472 ax-ac2 10500 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 ax-mulf 11232 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-disj 5115 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-tpos 8249 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-oadd 8508 df-omul 8509 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-dju 9938 df-card 9976 df-acn 9979 df-ac 10153 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-fl 13828 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-clim 15520 df-rlim 15521 df-sum 15719 df-prod 15936 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-prds 17493 df-pws 17495 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-mhm 18808 df-submnd 18809 df-grp 18966 df-minusg 18967 df-sbg 18968 df-subg 19153 df-ghm 19243 df-cntz 19347 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-cring 20253 df-oppr 20350 df-dvdsr 20373 df-unit 20374 df-invr 20404 df-dvr 20417 df-rhm 20488 df-subrng 20562 df-subrg 20586 df-drng 20747 df-field 20748 df-abv 20826 df-staf 20856 df-srng 20857 df-lmod 20876 df-lss 20947 df-lmhm 21038 df-lvec 21119 df-sra 21189 df-rgmod 21190 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-cnfld 21382 df-refld 21640 df-phl 21661 df-dsmm 21769 df-frlm 21784 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cmp 23410 df-xms 24345 df-ms 24346 df-nm 24610 df-ngp 24611 df-tng 24612 df-nrg 24613 df-nlm 24614 df-clm 25109 df-cph 25215 df-tcph 25216 df-rrx 25432 df-ovol 25512 df-vol 25513 df-salg 46264 df-sumge0 46318 df-mea 46405 df-ome 46445 df-caragen 46447 df-ovoln 46492 df-voln 46494 |
This theorem is referenced by: ctvonmbl 46644 vonsn 46646 vonct 46648 |
Copyright terms: Public domain | W3C validator |