![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonsn | Structured version Visualization version GIF version |
Description: The n-dimensional Lebesgue measure of a singleton is zero. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
vonsn.1 | β’ (π β π β Fin) |
vonsn.2 | β’ (π β π΄ β (β βm π)) |
Ref | Expression |
---|---|
vonsn | β’ (π β ((volnβπ)β{π΄}) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . . . 5 β’ (π = β β (volnβπ) = (volnββ )) | |
2 | 1 | fveq1d 6890 | . . . 4 β’ (π = β β ((volnβπ)β{π΄}) = ((volnββ )β{π΄})) |
3 | 2 | adantl 482 | . . 3 β’ ((π β§ π = β ) β ((volnβπ)β{π΄}) = ((volnββ )β{π΄})) |
4 | 0fin 9167 | . . . . . 6 β’ β β Fin | |
5 | 4 | a1i 11 | . . . . 5 β’ ((π β§ π = β ) β β β Fin) |
6 | vonsn.2 | . . . . . . 7 β’ (π β π΄ β (β βm π)) | |
7 | 6 | adantr 481 | . . . . . 6 β’ ((π β§ π = β ) β π΄ β (β βm π)) |
8 | oveq2 7413 | . . . . . . 7 β’ (π = β β (β βm π) = (β βm β )) | |
9 | 8 | adantl 482 | . . . . . 6 β’ ((π β§ π = β ) β (β βm π) = (β βm β )) |
10 | 7, 9 | eleqtrd 2835 | . . . . 5 β’ ((π β§ π = β ) β π΄ β (β βm β )) |
11 | 5, 10 | snvonmbl 45388 | . . . 4 β’ ((π β§ π = β ) β {π΄} β dom (volnββ )) |
12 | 11 | von0val 45373 | . . 3 β’ ((π β§ π = β ) β ((volnββ )β{π΄}) = 0) |
13 | 3, 12 | eqtrd 2772 | . 2 β’ ((π β§ π = β ) β ((volnβπ)β{π΄}) = 0) |
14 | neqne 2948 | . . . 4 β’ (Β¬ π = β β π β β ) | |
15 | 14 | adantl 482 | . . 3 β’ ((π β§ Β¬ π = β ) β π β β ) |
16 | 6 | rrxsnicc 45002 | . . . . . . 7 β’ (π β Xπ β π ((π΄βπ)[,](π΄βπ)) = {π΄}) |
17 | 16 | eqcomd 2738 | . . . . . 6 β’ (π β {π΄} = Xπ β π ((π΄βπ)[,](π΄βπ))) |
18 | 17 | fveq2d 6892 | . . . . 5 β’ (π β ((volnβπ)β{π΄}) = ((volnβπ)βXπ β π ((π΄βπ)[,](π΄βπ)))) |
19 | 18 | adantr 481 | . . . 4 β’ ((π β§ π β β ) β ((volnβπ)β{π΄}) = ((volnβπ)βXπ β π ((π΄βπ)[,](π΄βπ)))) |
20 | vonsn.1 | . . . . . 6 β’ (π β π β Fin) | |
21 | 20 | adantr 481 | . . . . 5 β’ ((π β§ π β β ) β π β Fin) |
22 | simpr 485 | . . . . 5 β’ ((π β§ π β β ) β π β β ) | |
23 | elmapi 8839 | . . . . . . 7 β’ (π΄ β (β βm π) β π΄:πβΆβ) | |
24 | 6, 23 | syl 17 | . . . . . 6 β’ (π β π΄:πβΆβ) |
25 | 24 | adantr 481 | . . . . 5 β’ ((π β§ π β β ) β π΄:πβΆβ) |
26 | eqid 2732 | . . . . 5 β’ Xπ β π ((π΄βπ)[,](π΄βπ)) = Xπ β π ((π΄βπ)[,](π΄βπ)) | |
27 | 21, 22, 25, 25, 26 | vonn0icc 45390 | . . . 4 β’ ((π β§ π β β ) β ((volnβπ)βXπ β π ((π΄βπ)[,](π΄βπ))) = βπ β π (volβ((π΄βπ)[,](π΄βπ)))) |
28 | 24 | ffvelcdmda 7083 | . . . . . . . . . . 11 β’ ((π β§ π β π) β (π΄βπ) β β) |
29 | 28 | rexrd 11260 | . . . . . . . . . 10 β’ ((π β§ π β π) β (π΄βπ) β β*) |
30 | iccid 13365 | . . . . . . . . . 10 β’ ((π΄βπ) β β* β ((π΄βπ)[,](π΄βπ)) = {(π΄βπ)}) | |
31 | 29, 30 | syl 17 | . . . . . . . . 9 β’ ((π β§ π β π) β ((π΄βπ)[,](π΄βπ)) = {(π΄βπ)}) |
32 | 31 | fveq2d 6892 | . . . . . . . 8 β’ ((π β§ π β π) β (volβ((π΄βπ)[,](π΄βπ))) = (volβ{(π΄βπ)})) |
33 | volsn 44669 | . . . . . . . . 9 β’ ((π΄βπ) β β β (volβ{(π΄βπ)}) = 0) | |
34 | 28, 33 | syl 17 | . . . . . . . 8 β’ ((π β§ π β π) β (volβ{(π΄βπ)}) = 0) |
35 | 32, 34 | eqtrd 2772 | . . . . . . 7 β’ ((π β§ π β π) β (volβ((π΄βπ)[,](π΄βπ))) = 0) |
36 | 35 | prodeq2dv 15863 | . . . . . 6 β’ (π β βπ β π (volβ((π΄βπ)[,](π΄βπ))) = βπ β π 0) |
37 | 36 | adantr 481 | . . . . 5 β’ ((π β§ π β β ) β βπ β π (volβ((π΄βπ)[,](π΄βπ))) = βπ β π 0) |
38 | 0cnd 11203 | . . . . . . 7 β’ (π β 0 β β) | |
39 | fprodconst 15918 | . . . . . . 7 β’ ((π β Fin β§ 0 β β) β βπ β π 0 = (0β(β―βπ))) | |
40 | 20, 38, 39 | syl2anc 584 | . . . . . 6 β’ (π β βπ β π 0 = (0β(β―βπ))) |
41 | 40 | adantr 481 | . . . . 5 β’ ((π β§ π β β ) β βπ β π 0 = (0β(β―βπ))) |
42 | hashnncl 14322 | . . . . . . . . 9 β’ (π β Fin β ((β―βπ) β β β π β β )) | |
43 | 20, 42 | syl 17 | . . . . . . . 8 β’ (π β ((β―βπ) β β β π β β )) |
44 | 43 | adantr 481 | . . . . . . 7 β’ ((π β§ π β β ) β ((β―βπ) β β β π β β )) |
45 | 22, 44 | mpbird 256 | . . . . . 6 β’ ((π β§ π β β ) β (β―βπ) β β) |
46 | 0exp 14059 | . . . . . 6 β’ ((β―βπ) β β β (0β(β―βπ)) = 0) | |
47 | 45, 46 | syl 17 | . . . . 5 β’ ((π β§ π β β ) β (0β(β―βπ)) = 0) |
48 | 37, 41, 47 | 3eqtrd 2776 | . . . 4 β’ ((π β§ π β β ) β βπ β π (volβ((π΄βπ)[,](π΄βπ))) = 0) |
49 | 19, 27, 48 | 3eqtrd 2776 | . . 3 β’ ((π β§ π β β ) β ((volnβπ)β{π΄}) = 0) |
50 | 15, 49 | syldan 591 | . 2 β’ ((π β§ Β¬ π = β ) β ((volnβπ)β{π΄}) = 0) |
51 | 13, 50 | pm2.61dan 811 | 1 β’ (π β ((volnβπ)β{π΄}) = 0) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 β c0 4321 {csn 4627 βΆwf 6536 βcfv 6540 (class class class)co 7405 βm cmap 8816 Xcixp 8887 Fincfn 8935 βcc 11104 βcr 11105 0cc0 11106 β*cxr 11243 βcn 12208 [,]cicc 13323 βcexp 14023 β―chash 14286 βcprod 15845 volcvol 24971 volncvoln 45240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cc 10426 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-omul 8467 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-acn 9933 df-ac 10107 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-rlim 15429 df-sum 15629 df-prod 15846 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-pws 17391 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-oppr 20142 df-dvdsr 20163 df-unit 20164 df-invr 20194 df-dvr 20207 df-rnghom 20243 df-drng 20309 df-field 20310 df-subrg 20353 df-abv 20417 df-staf 20445 df-srng 20446 df-lmod 20465 df-lss 20535 df-lmhm 20625 df-lvec 20706 df-sra 20777 df-rgmod 20778 df-psmet 20928 df-xmet 20929 df-met 20930 df-bl 20931 df-mopn 20932 df-cnfld 20937 df-refld 21149 df-phl 21170 df-dsmm 21278 df-frlm 21293 df-top 22387 df-topon 22404 df-topsp 22426 df-bases 22440 df-cn 22722 df-cnp 22723 df-cmp 22882 df-tx 23057 df-hmeo 23250 df-xms 23817 df-ms 23818 df-tms 23819 df-nm 24082 df-ngp 24083 df-tng 24084 df-nrg 24085 df-nlm 24086 df-cncf 24385 df-clm 24570 df-cph 24676 df-tcph 24677 df-rrx 24893 df-ovol 24972 df-vol 24973 df-salg 45011 df-sumge0 45065 df-mea 45152 df-ome 45192 df-caragen 45194 df-ovoln 45239 df-voln 45241 |
This theorem is referenced by: vonct 45395 |
Copyright terms: Public domain | W3C validator |