![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonsn | Structured version Visualization version GIF version |
Description: The n-dimensional Lebesgue measure of a singleton is zero. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
vonsn.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
vonsn.2 | ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) |
Ref | Expression |
---|---|
vonsn | ⊢ (𝜑 → ((voln‘𝑋)‘{𝐴}) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . . . 5 ⊢ (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅)) | |
2 | 1 | fveq1d 6890 | . . . 4 ⊢ (𝑋 = ∅ → ((voln‘𝑋)‘{𝐴}) = ((voln‘∅)‘{𝐴})) |
3 | 2 | adantl 483 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln‘𝑋)‘{𝐴}) = ((voln‘∅)‘{𝐴})) |
4 | 0fin 9167 | . . . . . 6 ⊢ ∅ ∈ Fin | |
5 | 4 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ∅ ∈ Fin) |
6 | vonsn.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) | |
7 | 6 | adantr 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ∈ (ℝ ↑m 𝑋)) |
8 | oveq2 7412 | . . . . . . 7 ⊢ (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅)) | |
9 | 8 | adantl 483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ ↑m 𝑋) = (ℝ ↑m ∅)) |
10 | 7, 9 | eleqtrd 2836 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ∈ (ℝ ↑m ∅)) |
11 | 5, 10 | snvonmbl 45337 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → {𝐴} ∈ dom (voln‘∅)) |
12 | 11 | von0val 45322 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln‘∅)‘{𝐴}) = 0) |
13 | 3, 12 | eqtrd 2773 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln‘𝑋)‘{𝐴}) = 0) |
14 | neqne 2949 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
15 | 14 | adantl 483 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
16 | 6 | rrxsnicc 44951 | . . . . . . 7 ⊢ (𝜑 → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)) = {𝐴}) |
17 | 16 | eqcomd 2739 | . . . . . 6 ⊢ (𝜑 → {𝐴} = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘))) |
18 | 17 | fveq2d 6892 | . . . . 5 ⊢ (𝜑 → ((voln‘𝑋)‘{𝐴}) = ((voln‘𝑋)‘X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)))) |
19 | 18 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln‘𝑋)‘{𝐴}) = ((voln‘𝑋)‘X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)))) |
20 | vonsn.1 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
21 | 20 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ∈ Fin) |
22 | simpr 486 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) | |
23 | elmapi 8839 | . . . . . . 7 ⊢ (𝐴 ∈ (ℝ ↑m 𝑋) → 𝐴:𝑋⟶ℝ) | |
24 | 6, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
25 | 24 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ) |
26 | eqid 2733 | . . . . 5 ⊢ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)) | |
27 | 21, 22, 25, 25, 26 | vonn0icc 45339 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐴‘𝑘)))) |
28 | 24 | ffvelcdmda 7082 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
29 | 28 | rexrd 11260 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ*) |
30 | iccid 13365 | . . . . . . . . . 10 ⊢ ((𝐴‘𝑘) ∈ ℝ* → ((𝐴‘𝑘)[,](𝐴‘𝑘)) = {(𝐴‘𝑘)}) | |
31 | 29, 30 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐴‘𝑘)[,](𝐴‘𝑘)) = {(𝐴‘𝑘)}) |
32 | 31 | fveq2d 6892 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,](𝐴‘𝑘))) = (vol‘{(𝐴‘𝑘)})) |
33 | volsn 44618 | . . . . . . . . 9 ⊢ ((𝐴‘𝑘) ∈ ℝ → (vol‘{(𝐴‘𝑘)}) = 0) | |
34 | 28, 33 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘{(𝐴‘𝑘)}) = 0) |
35 | 32, 34 | eqtrd 2773 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,](𝐴‘𝑘))) = 0) |
36 | 35 | prodeq2dv 15863 | . . . . . 6 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐴‘𝑘))) = ∏𝑘 ∈ 𝑋 0) |
37 | 36 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐴‘𝑘))) = ∏𝑘 ∈ 𝑋 0) |
38 | 0cnd 11203 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℂ) | |
39 | fprodconst 15918 | . . . . . . 7 ⊢ ((𝑋 ∈ Fin ∧ 0 ∈ ℂ) → ∏𝑘 ∈ 𝑋 0 = (0↑(♯‘𝑋))) | |
40 | 20, 38, 39 | syl2anc 585 | . . . . . 6 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 0 = (0↑(♯‘𝑋))) |
41 | 40 | adantr 482 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∏𝑘 ∈ 𝑋 0 = (0↑(♯‘𝑋))) |
42 | hashnncl 14322 | . . . . . . . . 9 ⊢ (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) | |
43 | 20, 42 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
44 | 43 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
45 | 22, 44 | mpbird 257 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ) |
46 | 0exp 14059 | . . . . . 6 ⊢ ((♯‘𝑋) ∈ ℕ → (0↑(♯‘𝑋)) = 0) | |
47 | 45, 46 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (0↑(♯‘𝑋)) = 0) |
48 | 37, 41, 47 | 3eqtrd 2777 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐴‘𝑘))) = 0) |
49 | 19, 27, 48 | 3eqtrd 2777 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln‘𝑋)‘{𝐴}) = 0) |
50 | 15, 49 | syldan 592 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘{𝐴}) = 0) |
51 | 13, 50 | pm2.61dan 812 | 1 ⊢ (𝜑 → ((voln‘𝑋)‘{𝐴}) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∅c0 4321 {csn 4627 ⟶wf 6536 ‘cfv 6540 (class class class)co 7404 ↑m cmap 8816 Xcixp 8887 Fincfn 8935 ℂcc 11104 ℝcr 11105 0cc0 11106 ℝ*cxr 11243 ℕcn 12208 [,]cicc 13323 ↑cexp 14023 ♯chash 14286 ∏cprod 15845 volcvol 24962 volncvoln 45189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-inf2 9632 ax-cc 10426 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-om 7851 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-omul 8466 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-acn 9933 df-ac 10107 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-hash 14287 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-rlim 15429 df-sum 15629 df-prod 15846 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-pws 17391 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19643 df-abl 19644 df-mgp 19980 df-ur 19997 df-ring 20049 df-cring 20050 df-oppr 20139 df-dvdsr 20160 df-unit 20161 df-invr 20191 df-dvr 20204 df-rnghom 20240 df-drng 20306 df-field 20307 df-subrg 20349 df-abv 20413 df-staf 20441 df-srng 20442 df-lmod 20461 df-lss 20531 df-lmhm 20621 df-lvec 20702 df-sra 20773 df-rgmod 20774 df-psmet 20921 df-xmet 20922 df-met 20923 df-bl 20924 df-mopn 20925 df-cnfld 20930 df-refld 21142 df-phl 21163 df-dsmm 21271 df-frlm 21286 df-top 22378 df-topon 22395 df-topsp 22417 df-bases 22431 df-cn 22713 df-cnp 22714 df-cmp 22873 df-tx 23048 df-hmeo 23241 df-xms 23808 df-ms 23809 df-tms 23810 df-nm 24073 df-ngp 24074 df-tng 24075 df-nrg 24076 df-nlm 24077 df-cncf 24376 df-clm 24561 df-cph 24667 df-tcph 24668 df-rrx 24884 df-ovol 24963 df-vol 24964 df-salg 44960 df-sumge0 45014 df-mea 45101 df-ome 45141 df-caragen 45143 df-ovoln 45188 df-voln 45190 |
This theorem is referenced by: vonct 45344 |
Copyright terms: Public domain | W3C validator |