Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonsn Structured version   Visualization version   GIF version

Theorem vonsn 42469
Description: The n-dimensional Lebesgue measure of a singleton is zero. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
vonsn.1 (𝜑𝑋 ∈ Fin)
vonsn.2 (𝜑𝐴 ∈ (ℝ ↑𝑚 𝑋))
Assertion
Ref Expression
vonsn (𝜑 → ((voln‘𝑋)‘{𝐴}) = 0)

Proof of Theorem vonsn
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6530 . . . . 5 (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅))
21fveq1d 6532 . . . 4 (𝑋 = ∅ → ((voln‘𝑋)‘{𝐴}) = ((voln‘∅)‘{𝐴}))
32adantl 482 . . 3 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘{𝐴}) = ((voln‘∅)‘{𝐴}))
4 0fin 8582 . . . . . 6 ∅ ∈ Fin
54a1i 11 . . . . 5 ((𝜑𝑋 = ∅) → ∅ ∈ Fin)
6 vonsn.2 . . . . . . 7 (𝜑𝐴 ∈ (ℝ ↑𝑚 𝑋))
76adantr 481 . . . . . 6 ((𝜑𝑋 = ∅) → 𝐴 ∈ (ℝ ↑𝑚 𝑋))
8 oveq2 7015 . . . . . . 7 (𝑋 = ∅ → (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 ∅))
98adantl 482 . . . . . 6 ((𝜑𝑋 = ∅) → (ℝ ↑𝑚 𝑋) = (ℝ ↑𝑚 ∅))
107, 9eleqtrd 2883 . . . . 5 ((𝜑𝑋 = ∅) → 𝐴 ∈ (ℝ ↑𝑚 ∅))
115, 10snvonmbl 42464 . . . 4 ((𝜑𝑋 = ∅) → {𝐴} ∈ dom (voln‘∅))
1211von0val 42449 . . 3 ((𝜑𝑋 = ∅) → ((voln‘∅)‘{𝐴}) = 0)
133, 12eqtrd 2829 . 2 ((𝜑𝑋 = ∅) → ((voln‘𝑋)‘{𝐴}) = 0)
14 neqne 2990 . . . 4 𝑋 = ∅ → 𝑋 ≠ ∅)
1514adantl 482 . . 3 ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅)
166rrxsnicc 42081 . . . . . . 7 (𝜑X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = {𝐴})
1716eqcomd 2799 . . . . . 6 (𝜑 → {𝐴} = X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)))
1817fveq2d 6534 . . . . 5 (𝜑 → ((voln‘𝑋)‘{𝐴}) = ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
1918adantr 481 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘{𝐴}) = ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))))
20 vonsn.1 . . . . . 6 (𝜑𝑋 ∈ Fin)
2120adantr 481 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝑋 ∈ Fin)
22 simpr 485 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝑋 ≠ ∅)
23 elmapi 8269 . . . . . . 7 (𝐴 ∈ (ℝ ↑𝑚 𝑋) → 𝐴:𝑋⟶ℝ)
246, 23syl 17 . . . . . 6 (𝜑𝐴:𝑋⟶ℝ)
2524adantr 481 . . . . 5 ((𝜑𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ)
26 eqid 2793 . . . . 5 X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘)) = X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))
2721, 22, 25, 25, 26vonn0icc 42466 . . . 4 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘𝑋 ((𝐴𝑘)[,](𝐴𝑘))) = ∏𝑘𝑋 (vol‘((𝐴𝑘)[,](𝐴𝑘))))
2824ffvelrnda 6707 . . . . . . . . . . 11 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ)
2928rexrd 10526 . . . . . . . . . 10 ((𝜑𝑘𝑋) → (𝐴𝑘) ∈ ℝ*)
30 iccid 12622 . . . . . . . . . 10 ((𝐴𝑘) ∈ ℝ* → ((𝐴𝑘)[,](𝐴𝑘)) = {(𝐴𝑘)})
3129, 30syl 17 . . . . . . . . 9 ((𝜑𝑘𝑋) → ((𝐴𝑘)[,](𝐴𝑘)) = {(𝐴𝑘)})
3231fveq2d 6534 . . . . . . . 8 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,](𝐴𝑘))) = (vol‘{(𝐴𝑘)}))
33 volsn 41747 . . . . . . . . 9 ((𝐴𝑘) ∈ ℝ → (vol‘{(𝐴𝑘)}) = 0)
3428, 33syl 17 . . . . . . . 8 ((𝜑𝑘𝑋) → (vol‘{(𝐴𝑘)}) = 0)
3532, 34eqtrd 2829 . . . . . . 7 ((𝜑𝑘𝑋) → (vol‘((𝐴𝑘)[,](𝐴𝑘))) = 0)
3635prodeq2dv 15098 . . . . . 6 (𝜑 → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,](𝐴𝑘))) = ∏𝑘𝑋 0)
3736adantr 481 . . . . 5 ((𝜑𝑋 ≠ ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,](𝐴𝑘))) = ∏𝑘𝑋 0)
38 0cnd 10469 . . . . . . 7 (𝜑 → 0 ∈ ℂ)
39 fprodconst 15153 . . . . . . 7 ((𝑋 ∈ Fin ∧ 0 ∈ ℂ) → ∏𝑘𝑋 0 = (0↑(♯‘𝑋)))
4020, 38, 39syl2anc 584 . . . . . 6 (𝜑 → ∏𝑘𝑋 0 = (0↑(♯‘𝑋)))
4140adantr 481 . . . . 5 ((𝜑𝑋 ≠ ∅) → ∏𝑘𝑋 0 = (0↑(♯‘𝑋)))
42 hashnncl 13565 . . . . . . . . 9 (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4320, 42syl 17 . . . . . . . 8 (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4443adantr 481 . . . . . . 7 ((𝜑𝑋 ≠ ∅) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
4522, 44mpbird 258 . . . . . 6 ((𝜑𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ)
46 0exp 13302 . . . . . 6 ((♯‘𝑋) ∈ ℕ → (0↑(♯‘𝑋)) = 0)
4745, 46syl 17 . . . . 5 ((𝜑𝑋 ≠ ∅) → (0↑(♯‘𝑋)) = 0)
4837, 41, 473eqtrd 2833 . . . 4 ((𝜑𝑋 ≠ ∅) → ∏𝑘𝑋 (vol‘((𝐴𝑘)[,](𝐴𝑘))) = 0)
4919, 27, 483eqtrd 2833 . . 3 ((𝜑𝑋 ≠ ∅) → ((voln‘𝑋)‘{𝐴}) = 0)
5015, 49syldan 591 . 2 ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘{𝐴}) = 0)
5113, 50pm2.61dan 809 1 (𝜑 → ((voln‘𝑋)‘{𝐴}) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1520  wcel 2079  wne 2982  c0 4206  {csn 4466  wf 6213  cfv 6217  (class class class)co 7007  𝑚 cmap 8247  Xcixp 8300  Fincfn 8347  cc 10370  cr 10371  0cc0 10372  *cxr 10509  cn 11475  [,]cicc 12580  cexp 13267  chash 13528  cprod 15080  volcvol 23735  volncvoln 42316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cc 9692  ax-ac2 9720  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-addf 10451  ax-mulf 10452
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-disj 4925  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-tpos 7734  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-omul 7949  df-er 8130  df-map 8249  df-pm 8250  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-dju 9165  df-card 9203  df-acn 9206  df-ac 9377  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-ioo 12581  df-ico 12583  df-icc 12584  df-fz 12732  df-fzo 12873  df-fl 13000  df-seq 13208  df-exp 13268  df-hash 13529  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-clim 14667  df-rlim 14668  df-sum 14865  df-prod 15081  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-starv 16397  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-unif 16405  df-hom 16406  df-cco 16407  df-rest 16513  df-topn 16514  df-0g 16532  df-gsum 16533  df-topgen 16534  df-pt 16535  df-prds 16538  df-pws 16540  df-xrs 16592  df-qtop 16597  df-imas 16598  df-xps 16600  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-mhm 17762  df-submnd 17763  df-grp 17852  df-minusg 17853  df-sbg 17854  df-mulg 17970  df-subg 18018  df-ghm 18085  df-cntz 18176  df-cmn 18623  df-abl 18624  df-mgp 18918  df-ur 18930  df-ring 18977  df-cring 18978  df-oppr 19051  df-dvdsr 19069  df-unit 19070  df-invr 19100  df-dvr 19111  df-rnghom 19145  df-drng 19182  df-field 19183  df-subrg 19211  df-abv 19266  df-staf 19294  df-srng 19295  df-lmod 19314  df-lss 19382  df-lmhm 19472  df-lvec 19553  df-sra 19622  df-rgmod 19623  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-cnfld 20216  df-refld 20419  df-phl 20440  df-dsmm 20546  df-frlm 20561  df-top 21174  df-topon 21191  df-topsp 21213  df-bases 21226  df-cn 21507  df-cnp 21508  df-cmp 21667  df-tx 21842  df-hmeo 22035  df-xms 22601  df-ms 22602  df-tms 22603  df-nm 22863  df-ngp 22864  df-tng 22865  df-nrg 22866  df-nlm 22867  df-cncf 23157  df-clm 23338  df-cph 23443  df-tcph 23444  df-rrx 23659  df-ovol 23736  df-vol 23737  df-salg 42090  df-sumge0 42141  df-mea 42228  df-ome 42268  df-caragen 42270  df-ovoln 42315  df-voln 42317
This theorem is referenced by:  vonct  42471
  Copyright terms: Public domain W3C validator