| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vonsn | Structured version Visualization version GIF version | ||
| Description: The n-dimensional Lebesgue measure of a singleton is zero. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| vonsn.1 | ⊢ (𝜑 → 𝑋 ∈ Fin) |
| vonsn.2 | ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) |
| Ref | Expression |
|---|---|
| vonsn | ⊢ (𝜑 → ((voln‘𝑋)‘{𝐴}) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6881 | . . . . 5 ⊢ (𝑋 = ∅ → (voln‘𝑋) = (voln‘∅)) | |
| 2 | 1 | fveq1d 6883 | . . . 4 ⊢ (𝑋 = ∅ → ((voln‘𝑋)‘{𝐴}) = ((voln‘∅)‘{𝐴})) |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln‘𝑋)‘{𝐴}) = ((voln‘∅)‘{𝐴})) |
| 4 | 0fi 9061 | . . . . . 6 ⊢ ∅ ∈ Fin | |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ∅ ∈ Fin) |
| 6 | vonsn.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (ℝ ↑m 𝑋)) | |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ∈ (ℝ ↑m 𝑋)) |
| 8 | oveq2 7418 | . . . . . . 7 ⊢ (𝑋 = ∅ → (ℝ ↑m 𝑋) = (ℝ ↑m ∅)) | |
| 9 | 8 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ ↑m 𝑋) = (ℝ ↑m ∅)) |
| 10 | 7, 9 | eleqtrd 2837 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ∈ (ℝ ↑m ∅)) |
| 11 | 5, 10 | snvonmbl 46682 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 = ∅) → {𝐴} ∈ dom (voln‘∅)) |
| 12 | 11 | von0val 46667 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln‘∅)‘{𝐴}) = 0) |
| 13 | 3, 12 | eqtrd 2771 | . 2 ⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln‘𝑋)‘{𝐴}) = 0) |
| 14 | neqne 2941 | . . . 4 ⊢ (¬ 𝑋 = ∅ → 𝑋 ≠ ∅) | |
| 15 | 14 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 16 | 6 | rrxsnicc 46296 | . . . . . . 7 ⊢ (𝜑 → X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)) = {𝐴}) |
| 17 | 16 | eqcomd 2742 | . . . . . 6 ⊢ (𝜑 → {𝐴} = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘))) |
| 18 | 17 | fveq2d 6885 | . . . . 5 ⊢ (𝜑 → ((voln‘𝑋)‘{𝐴}) = ((voln‘𝑋)‘X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)))) |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln‘𝑋)‘{𝐴}) = ((voln‘𝑋)‘X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)))) |
| 20 | vonsn.1 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
| 21 | 20 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ∈ Fin) |
| 22 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) | |
| 23 | elmapi 8868 | . . . . . . 7 ⊢ (𝐴 ∈ (ℝ ↑m 𝑋) → 𝐴:𝑋⟶ℝ) | |
| 24 | 6, 23 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
| 25 | 24 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝐴:𝑋⟶ℝ) |
| 26 | eqid 2736 | . . . . 5 ⊢ X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)) = X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘)) | |
| 27 | 21, 22, 25, 25, 26 | vonn0icc 46684 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln‘𝑋)‘X𝑘 ∈ 𝑋 ((𝐴‘𝑘)[,](𝐴‘𝑘))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐴‘𝑘)))) |
| 28 | 24 | ffvelcdmda 7079 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ) |
| 29 | 28 | rexrd 11290 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (𝐴‘𝑘) ∈ ℝ*) |
| 30 | iccid 13412 | . . . . . . . . . 10 ⊢ ((𝐴‘𝑘) ∈ ℝ* → ((𝐴‘𝑘)[,](𝐴‘𝑘)) = {(𝐴‘𝑘)}) | |
| 31 | 29, 30 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝐴‘𝑘)[,](𝐴‘𝑘)) = {(𝐴‘𝑘)}) |
| 32 | 31 | fveq2d 6885 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,](𝐴‘𝑘))) = (vol‘{(𝐴‘𝑘)})) |
| 33 | volsn 45963 | . . . . . . . . 9 ⊢ ((𝐴‘𝑘) ∈ ℝ → (vol‘{(𝐴‘𝑘)}) = 0) | |
| 34 | 28, 33 | syl 17 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘{(𝐴‘𝑘)}) = 0) |
| 35 | 32, 34 | eqtrd 2771 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (vol‘((𝐴‘𝑘)[,](𝐴‘𝑘))) = 0) |
| 36 | 35 | prodeq2dv 15943 | . . . . . 6 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐴‘𝑘))) = ∏𝑘 ∈ 𝑋 0) |
| 37 | 36 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐴‘𝑘))) = ∏𝑘 ∈ 𝑋 0) |
| 38 | 0cnd 11233 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 39 | fprodconst 15999 | . . . . . . 7 ⊢ ((𝑋 ∈ Fin ∧ 0 ∈ ℂ) → ∏𝑘 ∈ 𝑋 0 = (0↑(♯‘𝑋))) | |
| 40 | 20, 38, 39 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ∏𝑘 ∈ 𝑋 0 = (0↑(♯‘𝑋))) |
| 41 | 40 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∏𝑘 ∈ 𝑋 0 = (0↑(♯‘𝑋))) |
| 42 | hashnncl 14389 | . . . . . . . . 9 ⊢ (𝑋 ∈ Fin → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) | |
| 43 | 20, 42 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
| 44 | 43 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((♯‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅)) |
| 45 | 22, 44 | mpbird 257 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (♯‘𝑋) ∈ ℕ) |
| 46 | 0exp 14120 | . . . . . 6 ⊢ ((♯‘𝑋) ∈ ℕ → (0↑(♯‘𝑋)) = 0) | |
| 47 | 45, 46 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (0↑(♯‘𝑋)) = 0) |
| 48 | 37, 41, 47 | 3eqtrd 2775 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,](𝐴‘𝑘))) = 0) |
| 49 | 19, 27, 48 | 3eqtrd 2775 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln‘𝑋)‘{𝐴}) = 0) |
| 50 | 15, 49 | syldan 591 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln‘𝑋)‘{𝐴}) = 0) |
| 51 | 13, 50 | pm2.61dan 812 | 1 ⊢ (𝜑 → ((voln‘𝑋)‘{𝐴}) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 {csn 4606 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 Xcixp 8916 Fincfn 8964 ℂcc 11132 ℝcr 11133 0cc0 11134 ℝ*cxr 11273 ℕcn 12245 [,]cicc 13370 ↑cexp 14084 ♯chash 14353 ∏cprod 15924 volcvol 25421 volncvoln 46534 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cc 10454 ax-ac2 10482 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-disj 5092 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-omul 8490 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-acn 9961 df-ac 10135 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 df-sum 15708 df-prod 15925 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-pws 17468 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-rhm 20437 df-subrng 20511 df-subrg 20535 df-drng 20696 df-field 20697 df-abv 20774 df-staf 20804 df-srng 20805 df-lmod 20824 df-lss 20894 df-lmhm 20985 df-lvec 21066 df-sra 21136 df-rgmod 21137 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-cnfld 21321 df-refld 21570 df-phl 21591 df-dsmm 21697 df-frlm 21712 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cn 23170 df-cnp 23171 df-cmp 23330 df-tx 23505 df-hmeo 23698 df-xms 24264 df-ms 24265 df-tms 24266 df-nm 24526 df-ngp 24527 df-tng 24528 df-nrg 24529 df-nlm 24530 df-cncf 24827 df-clm 25019 df-cph 25125 df-tcph 25126 df-rrx 25342 df-ovol 25422 df-vol 25423 df-salg 46305 df-sumge0 46359 df-mea 46446 df-ome 46486 df-caragen 46488 df-ovoln 46533 df-voln 46535 |
| This theorem is referenced by: vonct 46689 |
| Copyright terms: Public domain | W3C validator |