![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > vonsn | Structured version Visualization version GIF version |
Description: The n-dimensional Lebesgue measure of a singleton is zero. This is the first statement in Proposition 115G (e) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
vonsn.1 | β’ (π β π β Fin) |
vonsn.2 | β’ (π β π΄ β (β βm π)) |
Ref | Expression |
---|---|
vonsn | β’ (π β ((volnβπ)β{π΄}) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6897 | . . . . 5 β’ (π = β β (volnβπ) = (volnββ )) | |
2 | 1 | fveq1d 6899 | . . . 4 β’ (π = β β ((volnβπ)β{π΄}) = ((volnββ )β{π΄})) |
3 | 2 | adantl 481 | . . 3 β’ ((π β§ π = β ) β ((volnβπ)β{π΄}) = ((volnββ )β{π΄})) |
4 | 0fin 9196 | . . . . . 6 β’ β β Fin | |
5 | 4 | a1i 11 | . . . . 5 β’ ((π β§ π = β ) β β β Fin) |
6 | vonsn.2 | . . . . . . 7 β’ (π β π΄ β (β βm π)) | |
7 | 6 | adantr 480 | . . . . . 6 β’ ((π β§ π = β ) β π΄ β (β βm π)) |
8 | oveq2 7428 | . . . . . . 7 β’ (π = β β (β βm π) = (β βm β )) | |
9 | 8 | adantl 481 | . . . . . 6 β’ ((π β§ π = β ) β (β βm π) = (β βm β )) |
10 | 7, 9 | eleqtrd 2831 | . . . . 5 β’ ((π β§ π = β ) β π΄ β (β βm β )) |
11 | 5, 10 | snvonmbl 46074 | . . . 4 β’ ((π β§ π = β ) β {π΄} β dom (volnββ )) |
12 | 11 | von0val 46059 | . . 3 β’ ((π β§ π = β ) β ((volnββ )β{π΄}) = 0) |
13 | 3, 12 | eqtrd 2768 | . 2 β’ ((π β§ π = β ) β ((volnβπ)β{π΄}) = 0) |
14 | neqne 2945 | . . . 4 β’ (Β¬ π = β β π β β ) | |
15 | 14 | adantl 481 | . . 3 β’ ((π β§ Β¬ π = β ) β π β β ) |
16 | 6 | rrxsnicc 45688 | . . . . . . 7 β’ (π β Xπ β π ((π΄βπ)[,](π΄βπ)) = {π΄}) |
17 | 16 | eqcomd 2734 | . . . . . 6 β’ (π β {π΄} = Xπ β π ((π΄βπ)[,](π΄βπ))) |
18 | 17 | fveq2d 6901 | . . . . 5 β’ (π β ((volnβπ)β{π΄}) = ((volnβπ)βXπ β π ((π΄βπ)[,](π΄βπ)))) |
19 | 18 | adantr 480 | . . . 4 β’ ((π β§ π β β ) β ((volnβπ)β{π΄}) = ((volnβπ)βXπ β π ((π΄βπ)[,](π΄βπ)))) |
20 | vonsn.1 | . . . . . 6 β’ (π β π β Fin) | |
21 | 20 | adantr 480 | . . . . 5 β’ ((π β§ π β β ) β π β Fin) |
22 | simpr 484 | . . . . 5 β’ ((π β§ π β β ) β π β β ) | |
23 | elmapi 8868 | . . . . . . 7 β’ (π΄ β (β βm π) β π΄:πβΆβ) | |
24 | 6, 23 | syl 17 | . . . . . 6 β’ (π β π΄:πβΆβ) |
25 | 24 | adantr 480 | . . . . 5 β’ ((π β§ π β β ) β π΄:πβΆβ) |
26 | eqid 2728 | . . . . 5 β’ Xπ β π ((π΄βπ)[,](π΄βπ)) = Xπ β π ((π΄βπ)[,](π΄βπ)) | |
27 | 21, 22, 25, 25, 26 | vonn0icc 46076 | . . . 4 β’ ((π β§ π β β ) β ((volnβπ)βXπ β π ((π΄βπ)[,](π΄βπ))) = βπ β π (volβ((π΄βπ)[,](π΄βπ)))) |
28 | 24 | ffvelcdmda 7094 | . . . . . . . . . . 11 β’ ((π β§ π β π) β (π΄βπ) β β) |
29 | 28 | rexrd 11295 | . . . . . . . . . 10 β’ ((π β§ π β π) β (π΄βπ) β β*) |
30 | iccid 13402 | . . . . . . . . . 10 β’ ((π΄βπ) β β* β ((π΄βπ)[,](π΄βπ)) = {(π΄βπ)}) | |
31 | 29, 30 | syl 17 | . . . . . . . . 9 β’ ((π β§ π β π) β ((π΄βπ)[,](π΄βπ)) = {(π΄βπ)}) |
32 | 31 | fveq2d 6901 | . . . . . . . 8 β’ ((π β§ π β π) β (volβ((π΄βπ)[,](π΄βπ))) = (volβ{(π΄βπ)})) |
33 | volsn 45355 | . . . . . . . . 9 β’ ((π΄βπ) β β β (volβ{(π΄βπ)}) = 0) | |
34 | 28, 33 | syl 17 | . . . . . . . 8 β’ ((π β§ π β π) β (volβ{(π΄βπ)}) = 0) |
35 | 32, 34 | eqtrd 2768 | . . . . . . 7 β’ ((π β§ π β π) β (volβ((π΄βπ)[,](π΄βπ))) = 0) |
36 | 35 | prodeq2dv 15900 | . . . . . 6 β’ (π β βπ β π (volβ((π΄βπ)[,](π΄βπ))) = βπ β π 0) |
37 | 36 | adantr 480 | . . . . 5 β’ ((π β§ π β β ) β βπ β π (volβ((π΄βπ)[,](π΄βπ))) = βπ β π 0) |
38 | 0cnd 11238 | . . . . . . 7 β’ (π β 0 β β) | |
39 | fprodconst 15955 | . . . . . . 7 β’ ((π β Fin β§ 0 β β) β βπ β π 0 = (0β(β―βπ))) | |
40 | 20, 38, 39 | syl2anc 583 | . . . . . 6 β’ (π β βπ β π 0 = (0β(β―βπ))) |
41 | 40 | adantr 480 | . . . . 5 β’ ((π β§ π β β ) β βπ β π 0 = (0β(β―βπ))) |
42 | hashnncl 14358 | . . . . . . . . 9 β’ (π β Fin β ((β―βπ) β β β π β β )) | |
43 | 20, 42 | syl 17 | . . . . . . . 8 β’ (π β ((β―βπ) β β β π β β )) |
44 | 43 | adantr 480 | . . . . . . 7 β’ ((π β§ π β β ) β ((β―βπ) β β β π β β )) |
45 | 22, 44 | mpbird 257 | . . . . . 6 β’ ((π β§ π β β ) β (β―βπ) β β) |
46 | 0exp 14095 | . . . . . 6 β’ ((β―βπ) β β β (0β(β―βπ)) = 0) | |
47 | 45, 46 | syl 17 | . . . . 5 β’ ((π β§ π β β ) β (0β(β―βπ)) = 0) |
48 | 37, 41, 47 | 3eqtrd 2772 | . . . 4 β’ ((π β§ π β β ) β βπ β π (volβ((π΄βπ)[,](π΄βπ))) = 0) |
49 | 19, 27, 48 | 3eqtrd 2772 | . . 3 β’ ((π β§ π β β ) β ((volnβπ)β{π΄}) = 0) |
50 | 15, 49 | syldan 590 | . 2 β’ ((π β§ Β¬ π = β ) β ((volnβπ)β{π΄}) = 0) |
51 | 13, 50 | pm2.61dan 812 | 1 β’ (π β ((volnβπ)β{π΄}) = 0) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 β wne 2937 β c0 4323 {csn 4629 βΆwf 6544 βcfv 6548 (class class class)co 7420 βm cmap 8845 Xcixp 8916 Fincfn 8964 βcc 11137 βcr 11138 0cc0 11139 β*cxr 11278 βcn 12243 [,]cicc 13360 βcexp 14059 β―chash 14322 βcprod 15882 volcvol 25405 volncvoln 45926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cc 10459 ax-ac2 10487 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 ax-mulf 11219 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-fi 9435 df-sup 9466 df-inf 9467 df-oi 9534 df-dju 9925 df-card 9963 df-acn 9966 df-ac 10140 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-ioo 13361 df-ico 13363 df-icc 13364 df-fz 13518 df-fzo 13661 df-fl 13790 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-rlim 15466 df-sum 15666 df-prod 15883 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-hom 17257 df-cco 17258 df-rest 17404 df-topn 17405 df-0g 17423 df-gsum 17424 df-topgen 17425 df-pt 17426 df-prds 17429 df-pws 17431 df-xrs 17484 df-qtop 17489 df-imas 17490 df-xps 17492 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-mhm 18740 df-submnd 18741 df-grp 18893 df-minusg 18894 df-sbg 18895 df-mulg 19024 df-subg 19078 df-ghm 19168 df-cntz 19268 df-cmn 19737 df-abl 19738 df-mgp 20075 df-rng 20093 df-ur 20122 df-ring 20175 df-cring 20176 df-oppr 20273 df-dvdsr 20296 df-unit 20297 df-invr 20327 df-dvr 20340 df-rhm 20411 df-subrng 20483 df-subrg 20508 df-drng 20626 df-field 20627 df-abv 20697 df-staf 20725 df-srng 20726 df-lmod 20745 df-lss 20816 df-lmhm 20907 df-lvec 20988 df-sra 21058 df-rgmod 21059 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-refld 21537 df-phl 21558 df-dsmm 21666 df-frlm 21681 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22862 df-cn 23144 df-cnp 23145 df-cmp 23304 df-tx 23479 df-hmeo 23672 df-xms 24239 df-ms 24240 df-tms 24241 df-nm 24504 df-ngp 24505 df-tng 24506 df-nrg 24507 df-nlm 24508 df-cncf 24811 df-clm 25003 df-cph 25109 df-tcph 25110 df-rrx 25326 df-ovol 25406 df-vol 25407 df-salg 45697 df-sumge0 45751 df-mea 45838 df-ome 45878 df-caragen 45880 df-ovoln 45925 df-voln 45927 |
This theorem is referenced by: vonct 46081 |
Copyright terms: Public domain | W3C validator |