| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > btwnsegle | Structured version Visualization version GIF version | ||
| Description: If 𝐵 falls between 𝐴 and 𝐶, then 𝐴𝐵 is no longer than 𝐴𝐶. (Contributed by Scott Fenton, 16-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| btwnsegle | ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn 〈𝐴, 𝐶〉 → 〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐶〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr2 1217 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐵 Btwn 〈𝐴, 𝐶〉) → 𝐵 ∈ (𝔼‘𝑁)) | |
| 2 | simpr 484 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐵 Btwn 〈𝐴, 𝐶〉) → 𝐵 Btwn 〈𝐴, 𝐶〉) | |
| 3 | simpl 482 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) | |
| 4 | simpr1 1195 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) | |
| 5 | simpr2 1196 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) | |
| 6 | 3, 4, 5 | cgrrflxd 35976 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐵 Btwn 〈𝐴, 𝐶〉) → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) |
| 8 | breq1 5110 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (𝑥 Btwn 〈𝐴, 𝐶〉 ↔ 𝐵 Btwn 〈𝐴, 𝐶〉)) | |
| 9 | opeq2 4838 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → 〈𝐴, 𝑥〉 = 〈𝐴, 𝐵〉) | |
| 10 | 9 | breq2d 5119 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (〈𝐴, 𝐵〉Cgr〈𝐴, 𝑥〉 ↔ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉)) |
| 11 | 8, 10 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝐵 → ((𝑥 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝑥〉) ↔ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉))) |
| 12 | 11 | rspcev 3588 | . . . 4 ⊢ ((𝐵 ∈ (𝔼‘𝑁) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝑥〉)) |
| 13 | 1, 2, 7, 12 | syl12anc 836 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐵 Btwn 〈𝐴, 𝐶〉) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝑥〉)) |
| 14 | simpr3 1197 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) | |
| 15 | brsegle 36096 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐶〉 ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝑥〉))) | |
| 16 | 3, 4, 5, 4, 14, 15 | syl122anc 1381 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐶〉 ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝑥〉))) |
| 17 | 16 | adantr 480 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐵 Btwn 〈𝐴, 𝐶〉) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐶〉 ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝑥 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐴, 𝑥〉))) |
| 18 | 13, 17 | mpbird 257 | . 2 ⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐵 Btwn 〈𝐴, 𝐶〉) → 〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐶〉) |
| 19 | 18 | ex 412 | 1 ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn 〈𝐴, 𝐶〉 → 〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐶〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 〈cop 4595 class class class wbr 5107 ‘cfv 6511 ℕcn 12186 𝔼cee 28815 Btwn cbtwn 28816 Cgrccgr 28817 Seg≤ csegle 36094 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-exp 14027 df-sum 15653 df-ee 28818 df-cgr 28820 df-segle 36095 |
| This theorem is referenced by: colinbtwnle 36106 outsidele 36120 |
| Copyright terms: Public domain | W3C validator |