| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leadd2dd | Structured version Visualization version GIF version | ||
| Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| leadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | leadd2d 11712 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 + caddc 11009 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 |
| This theorem is referenced by: le2addd 11736 difgtsumgt 12434 expmulnbnd 14142 discr1 14146 hashun2 14290 abstri 15238 iseraltlem2 15590 prmreclem4 16831 tcphcphlem1 25162 trirn 25327 nulmbl2 25464 voliunlem1 25478 uniioombllem4 25514 itg2split 25677 ulmcn 26335 abslogle 26554 emcllem2 26934 lgambdd 26974 chtublem 27149 chtub 27150 logfaclbnd 27160 bcmax 27216 chebbnd1lem2 27408 rplogsumlem1 27422 selberglem2 27484 selbergb 27487 chpdifbndlem1 27491 pntpbnd1a 27523 pntpbnd2 27525 pntibndlem2 27529 pntibndlem3 27530 pntlemg 27536 pntlemr 27540 pntlemk 27544 pntlemo 27545 ostth2lem3 27573 smcnlem 30677 minvecolem3 30856 staddi 32226 stadd3i 32228 nexple 32827 fsum2dsub 34620 resconn 35290 itg2addnc 37724 ftc1anclem8 37750 lcmineqlem22 42153 aks4d1p1p2 42173 aks4d1p1p5 42178 bcle2d 42282 aks6d1c7lem1 42283 fimgmcyc 42637 pell1qrgaplem 42976 ioodvbdlimc1lem2 46040 stoweidlem11 46119 stoweidlem26 46134 stirlinglem8 46189 stirlinglem12 46193 fourierdlem4 46219 fourierdlem10 46225 fourierdlem42 46257 fourierdlem47 46261 fourierdlem72 46286 fourierdlem79 46293 fourierdlem93 46307 fourierdlem101 46315 fourierdlem103 46317 fourierdlem104 46318 fourierdlem111 46325 hoidmv1lelem2 46700 vonioolem2 46789 vonicclem2 46792 p1lep2 47410 fmtnodvds 47654 lighneallem4a 47718 |
| Copyright terms: Public domain | W3C validator |