Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leadd2dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
leadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | leadd2d 11570 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
6 | 1, 5 | mpbid 231 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 + caddc 10874 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: difgtsumgt 12286 expmulnbnd 13950 discr1 13954 hashun2 14098 abstri 15042 iseraltlem2 15394 prmreclem4 16620 tcphcphlem1 24399 trirn 24564 nulmbl2 24700 voliunlem1 24714 uniioombllem4 24750 itg2split 24914 ulmcn 25558 abslogle 25773 emcllem2 26146 lgambdd 26186 chtublem 26359 chtub 26360 logfaclbnd 26370 bcmax 26426 chebbnd1lem2 26618 rplogsumlem1 26632 selberglem2 26694 selbergb 26697 chpdifbndlem1 26701 pntpbnd1a 26733 pntpbnd2 26735 pntibndlem2 26739 pntibndlem3 26740 pntlemg 26746 pntlemr 26750 pntlemk 26754 pntlemo 26755 ostth2lem3 26783 smcnlem 29059 minvecolem3 29238 staddi 30608 stadd3i 30610 nexple 31977 fsum2dsub 32587 resconn 33208 itg2addnc 35831 ftc1anclem8 35857 lcmineqlem22 40058 aks4d1p1p2 40078 aks4d1p1p5 40083 pell1qrgaplem 40695 leadd12dd 42855 ioodvbdlimc1lem2 43473 stoweidlem11 43552 stoweidlem26 43567 stirlinglem8 43622 stirlinglem12 43626 fourierdlem4 43652 fourierdlem10 43658 fourierdlem42 43690 fourierdlem47 43694 fourierdlem72 43719 fourierdlem79 43726 fourierdlem93 43740 fourierdlem101 43748 fourierdlem103 43750 fourierdlem104 43751 fourierdlem111 43758 hoidmv1lelem2 44130 vonioolem2 44219 vonicclem2 44222 p1lep2 44792 fmtnodvds 44996 lighneallem4a 45060 |
Copyright terms: Public domain | W3C validator |