| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leadd2dd | Structured version Visualization version GIF version | ||
| Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| leadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | leadd2d 11749 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 + caddc 11047 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: le2addd 11773 difgtsumgt 12471 expmulnbnd 14176 discr1 14180 hashun2 14324 abstri 15273 iseraltlem2 15625 prmreclem4 16866 tcphcphlem1 25168 trirn 25333 nulmbl2 25470 voliunlem1 25484 uniioombllem4 25520 itg2split 25683 ulmcn 26341 abslogle 26560 emcllem2 26940 lgambdd 26980 chtublem 27155 chtub 27156 logfaclbnd 27166 bcmax 27222 chebbnd1lem2 27414 rplogsumlem1 27428 selberglem2 27490 selbergb 27493 chpdifbndlem1 27497 pntpbnd1a 27529 pntpbnd2 27531 pntibndlem2 27535 pntibndlem3 27536 pntlemg 27542 pntlemr 27546 pntlemk 27550 pntlemo 27551 ostth2lem3 27579 smcnlem 30676 minvecolem3 30855 staddi 32225 stadd3i 32227 nexple 32819 fsum2dsub 34591 resconn 35226 itg2addnc 37661 ftc1anclem8 37687 lcmineqlem22 42031 aks4d1p1p2 42051 aks4d1p1p5 42056 bcle2d 42160 aks6d1c7lem1 42161 fimgmcyc 42515 pell1qrgaplem 42854 ioodvbdlimc1lem2 45923 stoweidlem11 46002 stoweidlem26 46017 stirlinglem8 46072 stirlinglem12 46076 fourierdlem4 46102 fourierdlem10 46108 fourierdlem42 46140 fourierdlem47 46144 fourierdlem72 46169 fourierdlem79 46176 fourierdlem93 46190 fourierdlem101 46198 fourierdlem103 46200 fourierdlem104 46201 fourierdlem111 46208 hoidmv1lelem2 46583 vonioolem2 46672 vonicclem2 46675 p1lep2 47294 fmtnodvds 47538 lighneallem4a 47602 |
| Copyright terms: Public domain | W3C validator |