Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
class class class wbr 5110 (class class class)co 7362
ℝcr 11057 + caddc 11061 ≤ cle 11197 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-po 5550 df-so 5551 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 |
This theorem is referenced by: difgtsumgt
12473 expmulnbnd
14145 discr1
14149 hashun2
14290 abstri
15222 iseraltlem2
15574 prmreclem4
16798 tcphcphlem1
24615 trirn
24780 nulmbl2
24916 voliunlem1
24930 uniioombllem4
24966 itg2split
25130 ulmcn
25774 abslogle
25989 emcllem2
26362 lgambdd
26402 chtublem
26575 chtub
26576 logfaclbnd
26586 bcmax
26642 chebbnd1lem2
26834 rplogsumlem1
26848 selberglem2
26910 selbergb
26913 chpdifbndlem1
26917 pntpbnd1a
26949 pntpbnd2
26951 pntibndlem2
26955 pntibndlem3
26956 pntlemg
26962 pntlemr
26966 pntlemk
26970 pntlemo
26971 ostth2lem3
26999 smcnlem
29681 minvecolem3
29860 staddi
31230 stadd3i
31232 nexple
32648 fsum2dsub
33260 resconn
33880 itg2addnc
36161 ftc1anclem8
36187 lcmineqlem22
40536 aks4d1p1p2
40556 aks4d1p1p5
40561 pell1qrgaplem
41225 leadd12dd
43624 ioodvbdlimc1lem2
44247 stoweidlem11
44326 stoweidlem26
44341 stirlinglem8
44396 stirlinglem12
44400 fourierdlem4
44426 fourierdlem10
44432 fourierdlem42
44464 fourierdlem47
44468 fourierdlem72
44493 fourierdlem79
44500 fourierdlem93
44514 fourierdlem101
44522 fourierdlem103
44524 fourierdlem104
44525 fourierdlem111
44532 hoidmv1lelem2
44907 vonioolem2
44996 vonicclem2
44999 p1lep2
45606 fmtnodvds
45810 lighneallem4a
45874 |