Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
class class class wbr 5149 (class class class)co 7409
ℝcr 11109 + caddc 11113 ≤ cle 11249 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 |
This theorem is referenced by: difgtsumgt
12525 expmulnbnd
14198 discr1
14202 hashun2
14343 abstri
15277 iseraltlem2
15629 prmreclem4
16852 tcphcphlem1
24752 trirn
24917 nulmbl2
25053 voliunlem1
25067 uniioombllem4
25103 itg2split
25267 ulmcn
25911 abslogle
26126 emcllem2
26501 lgambdd
26541 chtublem
26714 chtub
26715 logfaclbnd
26725 bcmax
26781 chebbnd1lem2
26973 rplogsumlem1
26987 selberglem2
27049 selbergb
27052 chpdifbndlem1
27056 pntpbnd1a
27088 pntpbnd2
27090 pntibndlem2
27094 pntibndlem3
27095 pntlemg
27101 pntlemr
27105 pntlemk
27109 pntlemo
27110 ostth2lem3
27138 smcnlem
29950 minvecolem3
30129 staddi
31499 stadd3i
31501 nexple
33007 fsum2dsub
33619 resconn
34237 itg2addnc
36542 ftc1anclem8
36568 lcmineqlem22
40915 aks4d1p1p2
40935 aks4d1p1p5
40940 pell1qrgaplem
41611 leadd12dd
44026 ioodvbdlimc1lem2
44648 stoweidlem11
44727 stoweidlem26
44742 stirlinglem8
44797 stirlinglem12
44801 fourierdlem4
44827 fourierdlem10
44833 fourierdlem42
44865 fourierdlem47
44869 fourierdlem72
44894 fourierdlem79
44901 fourierdlem93
44915 fourierdlem101
44923 fourierdlem103
44925 fourierdlem104
44926 fourierdlem111
44933 hoidmv1lelem2
45308 vonioolem2
45397 vonicclem2
45400 p1lep2
46008 fmtnodvds
46212 lighneallem4a
46276 |