![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leadd2dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
leadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | leadd2d 11856 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 + caddc 11156 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 |
This theorem is referenced by: difgtsumgt 12577 expmulnbnd 14271 discr1 14275 hashun2 14419 abstri 15366 iseraltlem2 15716 prmreclem4 16953 tcphcphlem1 25283 trirn 25448 nulmbl2 25585 voliunlem1 25599 uniioombllem4 25635 itg2split 25799 ulmcn 26457 abslogle 26675 emcllem2 27055 lgambdd 27095 chtublem 27270 chtub 27271 logfaclbnd 27281 bcmax 27337 chebbnd1lem2 27529 rplogsumlem1 27543 selberglem2 27605 selbergb 27608 chpdifbndlem1 27612 pntpbnd1a 27644 pntpbnd2 27646 pntibndlem2 27650 pntibndlem3 27651 pntlemg 27657 pntlemr 27661 pntlemk 27665 pntlemo 27666 ostth2lem3 27694 smcnlem 30726 minvecolem3 30905 staddi 32275 stadd3i 32277 nexple 33990 fsum2dsub 34601 resconn 35231 itg2addnc 37661 ftc1anclem8 37687 lcmineqlem22 42032 aks4d1p1p2 42052 aks4d1p1p5 42057 bcle2d 42161 aks6d1c7lem1 42162 fimgmcyc 42521 pell1qrgaplem 42861 leadd12dd 45267 ioodvbdlimc1lem2 45888 stoweidlem11 45967 stoweidlem26 45982 stirlinglem8 46037 stirlinglem12 46041 fourierdlem4 46067 fourierdlem10 46073 fourierdlem42 46105 fourierdlem47 46109 fourierdlem72 46134 fourierdlem79 46141 fourierdlem93 46155 fourierdlem101 46163 fourierdlem103 46165 fourierdlem104 46166 fourierdlem111 46173 hoidmv1lelem2 46548 vonioolem2 46637 vonicclem2 46640 p1lep2 47250 fmtnodvds 47469 lighneallem4a 47533 |
Copyright terms: Public domain | W3C validator |