| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leadd2dd | Structured version Visualization version GIF version | ||
| Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| leadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 2, 3, 4 | leadd2d 11773 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
| 6 | 1, 5 | mpbid 232 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 + caddc 11071 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: le2addd 11797 difgtsumgt 12495 expmulnbnd 14200 discr1 14204 hashun2 14348 abstri 15297 iseraltlem2 15649 prmreclem4 16890 tcphcphlem1 25135 trirn 25300 nulmbl2 25437 voliunlem1 25451 uniioombllem4 25487 itg2split 25650 ulmcn 26308 abslogle 26527 emcllem2 26907 lgambdd 26947 chtublem 27122 chtub 27123 logfaclbnd 27133 bcmax 27189 chebbnd1lem2 27381 rplogsumlem1 27395 selberglem2 27457 selbergb 27460 chpdifbndlem1 27464 pntpbnd1a 27496 pntpbnd2 27498 pntibndlem2 27502 pntibndlem3 27503 pntlemg 27509 pntlemr 27513 pntlemk 27517 pntlemo 27518 ostth2lem3 27546 smcnlem 30626 minvecolem3 30805 staddi 32175 stadd3i 32177 nexple 32769 fsum2dsub 34598 resconn 35233 itg2addnc 37668 ftc1anclem8 37694 lcmineqlem22 42038 aks4d1p1p2 42058 aks4d1p1p5 42063 bcle2d 42167 aks6d1c7lem1 42168 fimgmcyc 42522 pell1qrgaplem 42861 ioodvbdlimc1lem2 45930 stoweidlem11 46009 stoweidlem26 46024 stirlinglem8 46079 stirlinglem12 46083 fourierdlem4 46109 fourierdlem10 46115 fourierdlem42 46147 fourierdlem47 46151 fourierdlem72 46176 fourierdlem79 46183 fourierdlem93 46197 fourierdlem101 46205 fourierdlem103 46207 fourierdlem104 46208 fourierdlem111 46215 hoidmv1lelem2 46590 vonioolem2 46679 vonicclem2 46682 p1lep2 47298 fmtnodvds 47542 lighneallem4a 47606 |
| Copyright terms: Public domain | W3C validator |