![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leadd2dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
leadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | leadd2d 11816 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
6 | 1, 5 | mpbid 231 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5148 (class class class)co 7412 ℝcr 11115 + caddc 11119 ≤ cle 11256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 |
This theorem is referenced by: difgtsumgt 12532 expmulnbnd 14205 discr1 14209 hashun2 14350 abstri 15284 iseraltlem2 15636 prmreclem4 16859 tcphcphlem1 25083 trirn 25248 nulmbl2 25385 voliunlem1 25399 uniioombllem4 25435 itg2split 25599 ulmcn 26250 abslogle 26466 emcllem2 26843 lgambdd 26883 chtublem 27058 chtub 27059 logfaclbnd 27069 bcmax 27125 chebbnd1lem2 27317 rplogsumlem1 27331 selberglem2 27393 selbergb 27396 chpdifbndlem1 27400 pntpbnd1a 27432 pntpbnd2 27434 pntibndlem2 27438 pntibndlem3 27439 pntlemg 27445 pntlemr 27449 pntlemk 27453 pntlemo 27454 ostth2lem3 27482 smcnlem 30384 minvecolem3 30563 staddi 31933 stadd3i 31935 nexple 33472 fsum2dsub 34084 resconn 34702 itg2addnc 37008 ftc1anclem8 37034 lcmineqlem22 41384 aks4d1p1p2 41404 aks4d1p1p5 41409 pell1qrgaplem 42076 leadd12dd 44487 ioodvbdlimc1lem2 45109 stoweidlem11 45188 stoweidlem26 45203 stirlinglem8 45258 stirlinglem12 45262 fourierdlem4 45288 fourierdlem10 45294 fourierdlem42 45326 fourierdlem47 45330 fourierdlem72 45355 fourierdlem79 45362 fourierdlem93 45376 fourierdlem101 45384 fourierdlem103 45386 fourierdlem104 45387 fourierdlem111 45394 hoidmv1lelem2 45769 vonioolem2 45858 vonicclem2 45861 p1lep2 46469 fmtnodvds 46673 lighneallem4a 46737 |
Copyright terms: Public domain | W3C validator |