Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leadd2dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
leadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | leadd2d 11500 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
6 | 1, 5 | mpbid 231 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 + caddc 10805 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: difgtsumgt 12216 expmulnbnd 13878 discr1 13882 hashun2 14026 abstri 14970 iseraltlem2 15322 prmreclem4 16548 tcphcphlem1 24304 trirn 24469 nulmbl2 24605 voliunlem1 24619 uniioombllem4 24655 itg2split 24819 ulmcn 25463 abslogle 25678 emcllem2 26051 lgambdd 26091 chtublem 26264 chtub 26265 logfaclbnd 26275 bcmax 26331 chebbnd1lem2 26523 rplogsumlem1 26537 selberglem2 26599 selbergb 26602 chpdifbndlem1 26606 pntpbnd1a 26638 pntpbnd2 26640 pntibndlem2 26644 pntibndlem3 26645 pntlemg 26651 pntlemr 26655 pntlemk 26659 pntlemo 26660 ostth2lem3 26688 smcnlem 28960 minvecolem3 29139 staddi 30509 stadd3i 30511 nexple 31877 fsum2dsub 32487 resconn 33108 itg2addnc 35758 ftc1anclem8 35784 lcmineqlem22 39986 aks4d1p1p2 40006 aks4d1p1p5 40011 pell1qrgaplem 40611 leadd12dd 42745 ioodvbdlimc1lem2 43363 stoweidlem11 43442 stoweidlem26 43457 stirlinglem8 43512 stirlinglem12 43516 fourierdlem4 43542 fourierdlem10 43548 fourierdlem42 43580 fourierdlem47 43584 fourierdlem72 43609 fourierdlem79 43616 fourierdlem93 43630 fourierdlem101 43638 fourierdlem103 43640 fourierdlem104 43641 fourierdlem111 43648 hoidmv1lelem2 44020 vonioolem2 44109 vonicclem2 44112 p1lep2 44680 fmtnodvds 44884 lighneallem4a 44948 |
Copyright terms: Public domain | W3C validator |