Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > leadd2dd | Structured version Visualization version GIF version |
Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
leadd1dd.4 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
leadd2dd | ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leadd1dd.4 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
2 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
3 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | 2, 3, 4 | leadd2d 11287 | . 2 ⊢ (𝜑 → (𝐴 ≤ 𝐵 ↔ (𝐶 + 𝐴) ≤ (𝐶 + 𝐵))) |
6 | 1, 5 | mpbid 235 | 1 ⊢ (𝜑 → (𝐶 + 𝐴) ≤ (𝐶 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 class class class wbr 5037 (class class class)co 7157 ℝcr 10588 + caddc 10592 ≤ cle 10728 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-po 5448 df-so 5449 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-ov 7160 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 |
This theorem is referenced by: difgtsumgt 12001 expmulnbnd 13660 discr1 13664 hashun2 13808 abstri 14752 iseraltlem2 15101 prmreclem4 16325 tcphcphlem1 23950 trirn 24115 nulmbl2 24251 voliunlem1 24265 uniioombllem4 24301 itg2split 24464 ulmcn 25108 abslogle 25323 emcllem2 25696 lgambdd 25736 chtublem 25909 chtub 25910 logfaclbnd 25920 bcmax 25976 chebbnd1lem2 26168 rplogsumlem1 26182 selberglem2 26244 selbergb 26247 chpdifbndlem1 26251 pntpbnd1a 26283 pntpbnd2 26285 pntibndlem2 26289 pntibndlem3 26290 pntlemg 26296 pntlemr 26300 pntlemk 26304 pntlemo 26305 ostth2lem3 26333 smcnlem 28594 minvecolem3 28773 staddi 30143 stadd3i 30145 nexple 31510 fsum2dsub 32120 resconn 32738 itg2addnc 35427 ftc1anclem8 35453 lcmineqlem22 39653 aks4d1p1p2 39672 aks4d1p1p5 39677 pell1qrgaplem 40233 leadd12dd 42362 ioodvbdlimc1lem2 42986 stoweidlem11 43065 stoweidlem26 43080 stirlinglem8 43135 stirlinglem12 43139 fourierdlem4 43165 fourierdlem10 43171 fourierdlem42 43203 fourierdlem47 43207 fourierdlem72 43232 fourierdlem79 43239 fourierdlem93 43253 fourierdlem101 43261 fourierdlem103 43263 fourierdlem104 43264 fourierdlem111 43271 hoidmv1lelem2 43643 vonioolem2 43732 vonicclem2 43735 p1lep2 44285 fmtnodvds 44489 lighneallem4a 44553 |
Copyright terms: Public domain | W3C validator |