Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
class class class wbr 5148 (class class class)co 7411
ℝcr 11111 + caddc 11115 ≤ cle 11251 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 |
This theorem is referenced by: difgtsumgt
12527 expmulnbnd
14200 discr1
14204 hashun2
14345 abstri
15279 iseraltlem2
15631 prmreclem4
16854 tcphcphlem1
24759 trirn
24924 nulmbl2
25060 voliunlem1
25074 uniioombllem4
25110 itg2split
25274 ulmcn
25918 abslogle
26133 emcllem2
26508 lgambdd
26548 chtublem
26721 chtub
26722 logfaclbnd
26732 bcmax
26788 chebbnd1lem2
26980 rplogsumlem1
26994 selberglem2
27056 selbergb
27059 chpdifbndlem1
27063 pntpbnd1a
27095 pntpbnd2
27097 pntibndlem2
27101 pntibndlem3
27102 pntlemg
27108 pntlemr
27112 pntlemk
27116 pntlemo
27117 ostth2lem3
27145 smcnlem
29988 minvecolem3
30167 staddi
31537 stadd3i
31539 nexple
33076 fsum2dsub
33688 resconn
34306 itg2addnc
36628 ftc1anclem8
36654 lcmineqlem22
41001 aks4d1p1p2
41021 aks4d1p1p5
41026 pell1qrgaplem
41693 leadd12dd
44105 ioodvbdlimc1lem2
44727 stoweidlem11
44806 stoweidlem26
44821 stirlinglem8
44876 stirlinglem12
44880 fourierdlem4
44906 fourierdlem10
44912 fourierdlem42
44944 fourierdlem47
44948 fourierdlem72
44973 fourierdlem79
44980 fourierdlem93
44994 fourierdlem101
45002 fourierdlem103
45004 fourierdlem104
45005 fourierdlem111
45012 hoidmv1lelem2
45387 vonioolem2
45476 vonicclem2
45479 p1lep2
46087 fmtnodvds
46291 lighneallem4a
46355 |