MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrco Structured version   Visualization version   GIF version

Theorem dgrco 25636
Description: The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrco.1 𝑀 = (deg‘𝐹)
dgrco.2 𝑁 = (deg‘𝐺)
dgrco.3 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrco.4 (𝜑𝐺 ∈ (Poly‘𝑆))
Assertion
Ref Expression
dgrco (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))

Proof of Theorem dgrco
Dummy variables 𝑓 𝑥 𝑦 𝑑 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 25561 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 dgrco.3 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
31, 2sselid 3942 . 2 (𝜑𝐹 ∈ (Poly‘ℂ))
4 dgrco.1 . . . 4 𝑀 = (deg‘𝐹)
5 dgrcl 25594 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
62, 5syl 17 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℕ0)
74, 6eqeltrid 2842 . . 3 (𝜑𝑀 ∈ ℕ0)
8 breq2 5109 . . . . . . 7 (𝑥 = 0 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 0))
98imbi1d 341 . . . . . 6 (𝑥 = 0 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
109ralbidv 3174 . . . . 5 (𝑥 = 0 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1110imbi2d 340 . . . 4 (𝑥 = 0 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
12 breq2 5109 . . . . . . 7 (𝑥 = 𝑑 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 𝑑))
1312imbi1d 341 . . . . . 6 (𝑥 = 𝑑 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1413ralbidv 3174 . . . . 5 (𝑥 = 𝑑 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1514imbi2d 340 . . . 4 (𝑥 = 𝑑 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
16 breq2 5109 . . . . . . 7 (𝑥 = (𝑑 + 1) → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ (𝑑 + 1)))
1716imbi1d 341 . . . . . 6 (𝑥 = (𝑑 + 1) → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1817ralbidv 3174 . . . . 5 (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1918imbi2d 340 . . . 4 (𝑥 = (𝑑 + 1) → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
20 breq2 5109 . . . . . . 7 (𝑥 = 𝑀 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 𝑀))
2120imbi1d 341 . . . . . 6 (𝑥 = 𝑀 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
2221ralbidv 3174 . . . . 5 (𝑥 = 𝑀 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
2322imbi2d 340 . . . 4 (𝑥 = 𝑀 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
24 dgrco.2 . . . . . . . . . . . 12 𝑁 = (deg‘𝐺)
25 dgrco.4 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ (Poly‘𝑆))
26 dgrcl 25594 . . . . . . . . . . . . 13 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
2725, 26syl 17 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐺) ∈ ℕ0)
2824, 27eqeltrid 2842 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2928nn0cnd 12475 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
3029adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑁 ∈ ℂ)
3130mul02d 11353 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (0 · 𝑁) = 0)
32 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) ≤ 0)
33 dgrcl 25594 . . . . . . . . . . . 12 (𝑓 ∈ (Poly‘ℂ) → (deg‘𝑓) ∈ ℕ0)
3433ad2antrl 726 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) ∈ ℕ0)
3534nn0ge0d 12476 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 0 ≤ (deg‘𝑓))
3634nn0red 12474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) ∈ ℝ)
37 0re 11157 . . . . . . . . . . 11 0 ∈ ℝ
38 letri3 11240 . . . . . . . . . . 11 (((deg‘𝑓) ∈ ℝ ∧ 0 ∈ ℝ) → ((deg‘𝑓) = 0 ↔ ((deg‘𝑓) ≤ 0 ∧ 0 ≤ (deg‘𝑓))))
3936, 37, 38sylancl 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) = 0 ↔ ((deg‘𝑓) ≤ 0 ∧ 0 ≤ (deg‘𝑓))))
4032, 35, 39mpbir2and 711 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) = 0)
4140oveq1d 7372 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) · 𝑁) = (0 · 𝑁))
4231, 41, 403eqtr4d 2786 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) · 𝑁) = (deg‘𝑓))
43 fconstmpt 5694 . . . . . . . . 9 (ℂ × {(𝑓‘0)}) = (𝑦 ∈ ℂ ↦ (𝑓‘0))
44 0dgrb 25607 . . . . . . . . . . 11 (𝑓 ∈ (Poly‘ℂ) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)})))
4544ad2antrl 726 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)})))
4640, 45mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑓 = (ℂ × {(𝑓‘0)}))
4725adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝐺 ∈ (Poly‘𝑆))
48 plyf 25559 . . . . . . . . . . . 12 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
4947, 48syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝐺:ℂ⟶ℂ)
5049ffvelcdmda 7035 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) ∧ 𝑦 ∈ ℂ) → (𝐺𝑦) ∈ ℂ)
5149feqmptd 6910 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝐺 = (𝑦 ∈ ℂ ↦ (𝐺𝑦)))
52 fconstmpt 5694 . . . . . . . . . . 11 (ℂ × {(𝑓‘0)}) = (𝑥 ∈ ℂ ↦ (𝑓‘0))
5346, 52eqtrdi 2792 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑓 = (𝑥 ∈ ℂ ↦ (𝑓‘0)))
54 eqidd 2737 . . . . . . . . . 10 (𝑥 = (𝐺𝑦) → (𝑓‘0) = (𝑓‘0))
5550, 51, 53, 54fmptco 7075 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (𝑓𝐺) = (𝑦 ∈ ℂ ↦ (𝑓‘0)))
5643, 46, 553eqtr4a 2802 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑓 = (𝑓𝐺))
5756fveq2d 6846 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) = (deg‘(𝑓𝐺)))
5842, 57eqtr2d 2777 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))
5958expr 457 . . . . 5 ((𝜑𝑓 ∈ (Poly‘ℂ)) → ((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
6059ralrimiva 3143 . . . 4 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
61 fveq2 6842 . . . . . . . . . 10 (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔))
6261breq1d 5115 . . . . . . . . 9 (𝑓 = 𝑔 → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑔) ≤ 𝑑))
63 coeq1 5813 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝐺) = (𝑔𝐺))
6463fveq2d 6846 . . . . . . . . . 10 (𝑓 = 𝑔 → (deg‘(𝑓𝐺)) = (deg‘(𝑔𝐺)))
6561oveq1d 7372 . . . . . . . . . 10 (𝑓 = 𝑔 → ((deg‘𝑓) · 𝑁) = ((deg‘𝑔) · 𝑁))
6664, 65eqeq12d 2752 . . . . . . . . 9 (𝑓 = 𝑔 → ((deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))
6762, 66imbi12d 344 . . . . . . . 8 (𝑓 = 𝑔 → (((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))))
6867cbvralvw 3225 . . . . . . 7 (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))
6933ad2antrl 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (deg‘𝑓) ∈ ℕ0)
7069nn0red 12474 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (deg‘𝑓) ∈ ℝ)
71 nn0p1nn 12452 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ)
7271ad2antlr 725 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (𝑑 + 1) ∈ ℕ)
7372nnred 12168 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (𝑑 + 1) ∈ ℝ)
7470, 73leloed 11298 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ (𝑑 + 1) ↔ ((deg‘𝑓) < (𝑑 + 1) ∨ (deg‘𝑓) = (𝑑 + 1))))
75 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → 𝑑 ∈ ℕ0)
76 nn0leltp1 12562 . . . . . . . . . . . . 13 (((deg‘𝑓) ∈ ℕ0𝑑 ∈ ℕ0) → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑓) < (𝑑 + 1)))
7769, 75, 76syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑓) < (𝑑 + 1)))
78 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → (deg‘𝑔) = (deg‘𝑓))
7978breq1d 5115 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → ((deg‘𝑔) ≤ 𝑑 ↔ (deg‘𝑓) ≤ 𝑑))
80 coeq1 5813 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → (𝑔𝐺) = (𝑓𝐺))
8180fveq2d 6846 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → (deg‘(𝑔𝐺)) = (deg‘(𝑓𝐺)))
8278oveq1d 7372 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ((deg‘𝑔) · 𝑁) = ((deg‘𝑓) · 𝑁))
8381, 82eqeq12d 2752 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → ((deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁) ↔ (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
8479, 83imbi12d 344 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
8584rspcva 3579 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) → ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
8685adantl 482 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
8777, 86sylbird 259 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) < (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
88 eqid 2736 . . . . . . . . . . . . 13 (deg‘𝑓) = (deg‘𝑓)
89 simprll 777 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝑓 ∈ (Poly‘ℂ))
901, 25sselid 3942 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ (Poly‘ℂ))
9190ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝐺 ∈ (Poly‘ℂ))
92 eqid 2736 . . . . . . . . . . . . 13 (coeff‘𝑓) = (coeff‘𝑓)
93 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝑑 ∈ ℕ0)
94 simprr 771 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → (deg‘𝑓) = (𝑑 + 1))
95 simprlr 778 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))
96 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑔 = → (deg‘𝑔) = (deg‘))
9796breq1d 5115 . . . . . . . . . . . . . . . 16 (𝑔 = → ((deg‘𝑔) ≤ 𝑑 ↔ (deg‘) ≤ 𝑑))
98 coeq1 5813 . . . . . . . . . . . . . . . . . 18 (𝑔 = → (𝑔𝐺) = (𝐺))
9998fveq2d 6846 . . . . . . . . . . . . . . . . 17 (𝑔 = → (deg‘(𝑔𝐺)) = (deg‘(𝐺)))
10096oveq1d 7372 . . . . . . . . . . . . . . . . 17 (𝑔 = → ((deg‘𝑔) · 𝑁) = ((deg‘) · 𝑁))
10199, 100eqeq12d 2752 . . . . . . . . . . . . . . . 16 (𝑔 = → ((deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁) ↔ (deg‘(𝐺)) = ((deg‘) · 𝑁)))
10297, 101imbi12d 344 . . . . . . . . . . . . . . 15 (𝑔 = → (((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ((deg‘) ≤ 𝑑 → (deg‘(𝐺)) = ((deg‘) · 𝑁))))
103102cbvralvw 3225 . . . . . . . . . . . . . 14 (∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ∀ ∈ (Poly‘ℂ)((deg‘) ≤ 𝑑 → (deg‘(𝐺)) = ((deg‘) · 𝑁)))
10495, 103sylib 217 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → ∀ ∈ (Poly‘ℂ)((deg‘) ≤ 𝑑 → (deg‘(𝐺)) = ((deg‘) · 𝑁)))
10588, 24, 89, 91, 92, 93, 94, 104dgrcolem2 25635 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))
106105expr 457 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) = (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
10787, 106jaod 857 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (((deg‘𝑓) < (𝑑 + 1) ∨ (deg‘𝑓) = (𝑑 + 1)) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
10874, 107sylbid 239 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
109108expr 457 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘ℂ)) → (∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) → ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
110109ralrimdva 3151 . . . . . . 7 ((𝜑𝑑 ∈ ℕ0) → (∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
11168, 110biimtrid 241 . . . . . 6 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
112111expcom 414 . . . . 5 (𝑑 ∈ ℕ0 → (𝜑 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
113112a2d 29 . . . 4 (𝑑 ∈ ℕ0 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) → (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
11411, 15, 19, 23, 60, 113nn0ind 12598 . . 3 (𝑀 ∈ ℕ0 → (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1157, 114mpcom 38 . 2 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
1167nn0red 12474 . . 3 (𝜑𝑀 ∈ ℝ)
117116leidd 11721 . 2 (𝜑𝑀𝑀)
118 fveq2 6842 . . . . . 6 (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹))
119118, 4eqtr4di 2794 . . . . 5 (𝑓 = 𝐹 → (deg‘𝑓) = 𝑀)
120119breq1d 5115 . . . 4 (𝑓 = 𝐹 → ((deg‘𝑓) ≤ 𝑀𝑀𝑀))
121 coeq1 5813 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝐺) = (𝐹𝐺))
122121fveq2d 6846 . . . . 5 (𝑓 = 𝐹 → (deg‘(𝑓𝐺)) = (deg‘(𝐹𝐺)))
123119oveq1d 7372 . . . . 5 (𝑓 = 𝐹 → ((deg‘𝑓) · 𝑁) = (𝑀 · 𝑁))
124122, 123eqeq12d 2752 . . . 4 (𝑓 = 𝐹 → ((deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘(𝐹𝐺)) = (𝑀 · 𝑁)))
125120, 124imbi12d 344 . . 3 (𝑓 = 𝐹 → (((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ (𝑀𝑀 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))))
126125rspcv 3577 . 2 (𝐹 ∈ (Poly‘ℂ) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) → (𝑀𝑀 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))))
1273, 115, 117, 126syl3c 66 1 (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3064  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cn 12153  0cn0 12413  Polycply 25545  coeffccoe 25547  degcdgr 25548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-0p 25034  df-ply 25549  df-coe 25551  df-dgr 25552
This theorem is referenced by:  taylply2  25727  ftalem7  26428
  Copyright terms: Public domain W3C validator