MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrco Structured version   Visualization version   GIF version

Theorem dgrco 26211
Description: The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrco.1 𝑀 = (deg‘𝐹)
dgrco.2 𝑁 = (deg‘𝐺)
dgrco.3 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrco.4 (𝜑𝐺 ∈ (Poly‘𝑆))
Assertion
Ref Expression
dgrco (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))

Proof of Theorem dgrco
Dummy variables 𝑓 𝑥 𝑦 𝑑 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 26135 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 dgrco.3 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
31, 2sselid 3928 . 2 (𝜑𝐹 ∈ (Poly‘ℂ))
4 dgrco.1 . . . 4 𝑀 = (deg‘𝐹)
5 dgrcl 26168 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
62, 5syl 17 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℕ0)
74, 6eqeltrid 2837 . . 3 (𝜑𝑀 ∈ ℕ0)
8 breq2 5099 . . . . . . 7 (𝑥 = 0 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 0))
98imbi1d 341 . . . . . 6 (𝑥 = 0 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
109ralbidv 3156 . . . . 5 (𝑥 = 0 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1110imbi2d 340 . . . 4 (𝑥 = 0 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
12 breq2 5099 . . . . . . 7 (𝑥 = 𝑑 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 𝑑))
1312imbi1d 341 . . . . . 6 (𝑥 = 𝑑 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1413ralbidv 3156 . . . . 5 (𝑥 = 𝑑 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1514imbi2d 340 . . . 4 (𝑥 = 𝑑 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
16 breq2 5099 . . . . . . 7 (𝑥 = (𝑑 + 1) → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ (𝑑 + 1)))
1716imbi1d 341 . . . . . 6 (𝑥 = (𝑑 + 1) → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1817ralbidv 3156 . . . . 5 (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1918imbi2d 340 . . . 4 (𝑥 = (𝑑 + 1) → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
20 breq2 5099 . . . . . . 7 (𝑥 = 𝑀 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 𝑀))
2120imbi1d 341 . . . . . 6 (𝑥 = 𝑀 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
2221ralbidv 3156 . . . . 5 (𝑥 = 𝑀 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
2322imbi2d 340 . . . 4 (𝑥 = 𝑀 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
24 dgrco.2 . . . . . . . . . . . 12 𝑁 = (deg‘𝐺)
25 dgrco.4 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ (Poly‘𝑆))
26 dgrcl 26168 . . . . . . . . . . . . 13 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
2725, 26syl 17 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐺) ∈ ℕ0)
2824, 27eqeltrid 2837 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2928nn0cnd 12453 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
3029adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑁 ∈ ℂ)
3130mul02d 11320 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (0 · 𝑁) = 0)
32 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) ≤ 0)
33 dgrcl 26168 . . . . . . . . . . . 12 (𝑓 ∈ (Poly‘ℂ) → (deg‘𝑓) ∈ ℕ0)
3433ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) ∈ ℕ0)
3534nn0ge0d 12454 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 0 ≤ (deg‘𝑓))
3634nn0red 12452 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) ∈ ℝ)
37 0re 11123 . . . . . . . . . . 11 0 ∈ ℝ
38 letri3 11207 . . . . . . . . . . 11 (((deg‘𝑓) ∈ ℝ ∧ 0 ∈ ℝ) → ((deg‘𝑓) = 0 ↔ ((deg‘𝑓) ≤ 0 ∧ 0 ≤ (deg‘𝑓))))
3936, 37, 38sylancl 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) = 0 ↔ ((deg‘𝑓) ≤ 0 ∧ 0 ≤ (deg‘𝑓))))
4032, 35, 39mpbir2and 713 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) = 0)
4140oveq1d 7369 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) · 𝑁) = (0 · 𝑁))
4231, 41, 403eqtr4d 2778 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) · 𝑁) = (deg‘𝑓))
43 fconstmpt 5683 . . . . . . . . 9 (ℂ × {(𝑓‘0)}) = (𝑦 ∈ ℂ ↦ (𝑓‘0))
44 0dgrb 26181 . . . . . . . . . . 11 (𝑓 ∈ (Poly‘ℂ) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)})))
4544ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)})))
4640, 45mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑓 = (ℂ × {(𝑓‘0)}))
4725adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝐺 ∈ (Poly‘𝑆))
48 plyf 26133 . . . . . . . . . . . 12 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
4947, 48syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝐺:ℂ⟶ℂ)
5049ffvelcdmda 7025 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) ∧ 𝑦 ∈ ℂ) → (𝐺𝑦) ∈ ℂ)
5149feqmptd 6898 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝐺 = (𝑦 ∈ ℂ ↦ (𝐺𝑦)))
52 fconstmpt 5683 . . . . . . . . . . 11 (ℂ × {(𝑓‘0)}) = (𝑥 ∈ ℂ ↦ (𝑓‘0))
5346, 52eqtrdi 2784 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑓 = (𝑥 ∈ ℂ ↦ (𝑓‘0)))
54 eqidd 2734 . . . . . . . . . 10 (𝑥 = (𝐺𝑦) → (𝑓‘0) = (𝑓‘0))
5550, 51, 53, 54fmptco 7070 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (𝑓𝐺) = (𝑦 ∈ ℂ ↦ (𝑓‘0)))
5643, 46, 553eqtr4a 2794 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑓 = (𝑓𝐺))
5756fveq2d 6834 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) = (deg‘(𝑓𝐺)))
5842, 57eqtr2d 2769 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))
5958expr 456 . . . . 5 ((𝜑𝑓 ∈ (Poly‘ℂ)) → ((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
6059ralrimiva 3125 . . . 4 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
61 fveq2 6830 . . . . . . . . . 10 (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔))
6261breq1d 5105 . . . . . . . . 9 (𝑓 = 𝑔 → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑔) ≤ 𝑑))
63 coeq1 5803 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝐺) = (𝑔𝐺))
6463fveq2d 6834 . . . . . . . . . 10 (𝑓 = 𝑔 → (deg‘(𝑓𝐺)) = (deg‘(𝑔𝐺)))
6561oveq1d 7369 . . . . . . . . . 10 (𝑓 = 𝑔 → ((deg‘𝑓) · 𝑁) = ((deg‘𝑔) · 𝑁))
6664, 65eqeq12d 2749 . . . . . . . . 9 (𝑓 = 𝑔 → ((deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))
6762, 66imbi12d 344 . . . . . . . 8 (𝑓 = 𝑔 → (((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))))
6867cbvralvw 3211 . . . . . . 7 (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))
6933ad2antrl 728 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (deg‘𝑓) ∈ ℕ0)
7069nn0red 12452 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (deg‘𝑓) ∈ ℝ)
71 nn0p1nn 12429 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ)
7271ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (𝑑 + 1) ∈ ℕ)
7372nnred 12149 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (𝑑 + 1) ∈ ℝ)
7470, 73leloed 11265 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ (𝑑 + 1) ↔ ((deg‘𝑓) < (𝑑 + 1) ∨ (deg‘𝑓) = (𝑑 + 1))))
75 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → 𝑑 ∈ ℕ0)
76 nn0leltp1 12540 . . . . . . . . . . . . 13 (((deg‘𝑓) ∈ ℕ0𝑑 ∈ ℕ0) → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑓) < (𝑑 + 1)))
7769, 75, 76syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑓) < (𝑑 + 1)))
78 fveq2 6830 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → (deg‘𝑔) = (deg‘𝑓))
7978breq1d 5105 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → ((deg‘𝑔) ≤ 𝑑 ↔ (deg‘𝑓) ≤ 𝑑))
80 coeq1 5803 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → (𝑔𝐺) = (𝑓𝐺))
8180fveq2d 6834 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → (deg‘(𝑔𝐺)) = (deg‘(𝑓𝐺)))
8278oveq1d 7369 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ((deg‘𝑔) · 𝑁) = ((deg‘𝑓) · 𝑁))
8381, 82eqeq12d 2749 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → ((deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁) ↔ (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
8479, 83imbi12d 344 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
8584rspcva 3571 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) → ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
8685adantl 481 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
8777, 86sylbird 260 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) < (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
88 eqid 2733 . . . . . . . . . . . . 13 (deg‘𝑓) = (deg‘𝑓)
89 simprll 778 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝑓 ∈ (Poly‘ℂ))
901, 25sselid 3928 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ (Poly‘ℂ))
9190ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝐺 ∈ (Poly‘ℂ))
92 eqid 2733 . . . . . . . . . . . . 13 (coeff‘𝑓) = (coeff‘𝑓)
93 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝑑 ∈ ℕ0)
94 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → (deg‘𝑓) = (𝑑 + 1))
95 simprlr 779 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))
96 fveq2 6830 . . . . . . . . . . . . . . . . 17 (𝑔 = → (deg‘𝑔) = (deg‘))
9796breq1d 5105 . . . . . . . . . . . . . . . 16 (𝑔 = → ((deg‘𝑔) ≤ 𝑑 ↔ (deg‘) ≤ 𝑑))
98 coeq1 5803 . . . . . . . . . . . . . . . . . 18 (𝑔 = → (𝑔𝐺) = (𝐺))
9998fveq2d 6834 . . . . . . . . . . . . . . . . 17 (𝑔 = → (deg‘(𝑔𝐺)) = (deg‘(𝐺)))
10096oveq1d 7369 . . . . . . . . . . . . . . . . 17 (𝑔 = → ((deg‘𝑔) · 𝑁) = ((deg‘) · 𝑁))
10199, 100eqeq12d 2749 . . . . . . . . . . . . . . . 16 (𝑔 = → ((deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁) ↔ (deg‘(𝐺)) = ((deg‘) · 𝑁)))
10297, 101imbi12d 344 . . . . . . . . . . . . . . 15 (𝑔 = → (((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ((deg‘) ≤ 𝑑 → (deg‘(𝐺)) = ((deg‘) · 𝑁))))
103102cbvralvw 3211 . . . . . . . . . . . . . 14 (∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ∀ ∈ (Poly‘ℂ)((deg‘) ≤ 𝑑 → (deg‘(𝐺)) = ((deg‘) · 𝑁)))
10495, 103sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → ∀ ∈ (Poly‘ℂ)((deg‘) ≤ 𝑑 → (deg‘(𝐺)) = ((deg‘) · 𝑁)))
10588, 24, 89, 91, 92, 93, 94, 104dgrcolem2 26210 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))
106105expr 456 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) = (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
10787, 106jaod 859 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (((deg‘𝑓) < (𝑑 + 1) ∨ (deg‘𝑓) = (𝑑 + 1)) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
10874, 107sylbid 240 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
109108expr 456 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘ℂ)) → (∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) → ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
110109ralrimdva 3133 . . . . . . 7 ((𝜑𝑑 ∈ ℕ0) → (∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
11168, 110biimtrid 242 . . . . . 6 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
112111expcom 413 . . . . 5 (𝑑 ∈ ℕ0 → (𝜑 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
113112a2d 29 . . . 4 (𝑑 ∈ ℕ0 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) → (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
11411, 15, 19, 23, 60, 113nn0ind 12576 . . 3 (𝑀 ∈ ℕ0 → (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1157, 114mpcom 38 . 2 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
1167nn0red 12452 . . 3 (𝜑𝑀 ∈ ℝ)
117116leidd 11692 . 2 (𝜑𝑀𝑀)
118 fveq2 6830 . . . . . 6 (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹))
119118, 4eqtr4di 2786 . . . . 5 (𝑓 = 𝐹 → (deg‘𝑓) = 𝑀)
120119breq1d 5105 . . . 4 (𝑓 = 𝐹 → ((deg‘𝑓) ≤ 𝑀𝑀𝑀))
121 coeq1 5803 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝐺) = (𝐹𝐺))
122121fveq2d 6834 . . . . 5 (𝑓 = 𝐹 → (deg‘(𝑓𝐺)) = (deg‘(𝐹𝐺)))
123119oveq1d 7369 . . . . 5 (𝑓 = 𝐹 → ((deg‘𝑓) · 𝑁) = (𝑀 · 𝑁))
124122, 123eqeq12d 2749 . . . 4 (𝑓 = 𝐹 → ((deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘(𝐹𝐺)) = (𝑀 · 𝑁)))
125120, 124imbi12d 344 . . 3 (𝑓 = 𝐹 → (((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ (𝑀𝑀 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))))
126125rspcv 3569 . 2 (𝐹 ∈ (Poly‘ℂ) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) → (𝑀𝑀 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))))
1273, 115, 117, 126syl3c 66 1 (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wral 3048  {csn 4577   class class class wbr 5095  cmpt 5176   × cxp 5619  ccom 5625  wf 6484  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020   < clt 11155  cle 11156  cn 12134  0cn0 12390  Polycply 26119  coeffccoe 26121  degcdgr 26122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-pm 8761  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-fz 13412  df-fzo 13559  df-fl 13700  df-seq 13913  df-exp 13973  df-hash 14242  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-clim 15399  df-rlim 15400  df-sum 15598  df-0p 25601  df-ply 26123  df-coe 26125  df-dgr 26126
This theorem is referenced by:  taylply2  26305  taylply2OLD  26306  ftalem7  27019
  Copyright terms: Public domain W3C validator