Step | Hyp | Ref
| Expression |
1 | | plyssc 25361 |
. . 3
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
2 | | dgrco.3 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
3 | 1, 2 | sselid 3919 |
. 2
⊢ (𝜑 → 𝐹 ∈
(Poly‘ℂ)) |
4 | | dgrco.1 |
. . . 4
⊢ 𝑀 = (deg‘𝐹) |
5 | | dgrcl 25394 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
6 | 2, 5 | syl 17 |
. . . 4
⊢ (𝜑 → (deg‘𝐹) ∈
ℕ0) |
7 | 4, 6 | eqeltrid 2843 |
. . 3
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
8 | | breq2 5078 |
. . . . . . 7
⊢ (𝑥 = 0 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 0)) |
9 | 8 | imbi1d 342 |
. . . . . 6
⊢ (𝑥 = 0 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 0 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
10 | 9 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = 0 → (∀𝑓 ∈
(Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 →
(deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
11 | 10 | imbi2d 341 |
. . . 4
⊢ (𝑥 = 0 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 →
(deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))))) |
12 | | breq2 5078 |
. . . . . . 7
⊢ (𝑥 = 𝑑 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 𝑑)) |
13 | 12 | imbi1d 342 |
. . . . . 6
⊢ (𝑥 = 𝑑 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
14 | 13 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = 𝑑 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
15 | 14 | imbi2d 341 |
. . . 4
⊢ (𝑥 = 𝑑 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))))) |
16 | | breq2 5078 |
. . . . . . 7
⊢ (𝑥 = (𝑑 + 1) → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ (𝑑 + 1))) |
17 | 16 | imbi1d 342 |
. . . . . 6
⊢ (𝑥 = (𝑑 + 1) → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
18 | 17 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
19 | 18 | imbi2d 341 |
. . . 4
⊢ (𝑥 = (𝑑 + 1) → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))))) |
20 | | breq2 5078 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 𝑀)) |
21 | 20 | imbi1d 342 |
. . . . . 6
⊢ (𝑥 = 𝑀 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
22 | 21 | ralbidv 3112 |
. . . . 5
⊢ (𝑥 = 𝑀 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
23 | 22 | imbi2d 341 |
. . . 4
⊢ (𝑥 = 𝑀 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))))) |
24 | | dgrco.2 |
. . . . . . . . . . . 12
⊢ 𝑁 = (deg‘𝐺) |
25 | | dgrco.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
26 | | dgrcl 25394 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈
ℕ0) |
27 | 25, 26 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘𝐺) ∈
ℕ0) |
28 | 24, 27 | eqeltrid 2843 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
29 | 28 | nn0cnd 12295 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈ ℂ) |
30 | 29 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ 𝑁 ∈
ℂ) |
31 | 30 | mul02d 11173 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ (0 · 𝑁) =
0) |
32 | | simprr 770 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ (deg‘𝑓) ≤
0) |
33 | | dgrcl 25394 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (Poly‘ℂ)
→ (deg‘𝑓) ∈
ℕ0) |
34 | 33 | ad2antrl 725 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ (deg‘𝑓) ∈
ℕ0) |
35 | 34 | nn0ge0d 12296 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ 0 ≤ (deg‘𝑓)) |
36 | 34 | nn0red 12294 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ (deg‘𝑓) ∈
ℝ) |
37 | | 0re 10977 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ |
38 | | letri3 11060 |
. . . . . . . . . . 11
⊢
(((deg‘𝑓)
∈ ℝ ∧ 0 ∈ ℝ) → ((deg‘𝑓) = 0 ↔ ((deg‘𝑓) ≤ 0 ∧ 0 ≤ (deg‘𝑓)))) |
39 | 36, 37, 38 | sylancl 586 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ ((deg‘𝑓) = 0
↔ ((deg‘𝑓) ≤
0 ∧ 0 ≤ (deg‘𝑓)))) |
40 | 32, 35, 39 | mpbir2and 710 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ (deg‘𝑓) =
0) |
41 | 40 | oveq1d 7290 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ ((deg‘𝑓)
· 𝑁) = (0 ·
𝑁)) |
42 | 31, 41, 40 | 3eqtr4d 2788 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ ((deg‘𝑓)
· 𝑁) =
(deg‘𝑓)) |
43 | | fconstmpt 5649 |
. . . . . . . . 9
⊢ (ℂ
× {(𝑓‘0)}) =
(𝑦 ∈ ℂ ↦
(𝑓‘0)) |
44 | | 0dgrb 25407 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (Poly‘ℂ)
→ ((deg‘𝑓) = 0
↔ 𝑓 = (ℂ ×
{(𝑓‘0)}))) |
45 | 44 | ad2antrl 725 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ ((deg‘𝑓) = 0
↔ 𝑓 = (ℂ ×
{(𝑓‘0)}))) |
46 | 40, 45 | mpbid 231 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ 𝑓 = (ℂ ×
{(𝑓‘0)})) |
47 | 25 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ 𝐺 ∈
(Poly‘𝑆)) |
48 | | plyf 25359 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) |
49 | 47, 48 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ 𝐺:ℂ⟶ℂ) |
50 | 49 | ffvelrnda 6961 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
∧ 𝑦 ∈ ℂ)
→ (𝐺‘𝑦) ∈
ℂ) |
51 | 49 | feqmptd 6837 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ 𝐺 = (𝑦 ∈ ℂ ↦ (𝐺‘𝑦))) |
52 | | fconstmpt 5649 |
. . . . . . . . . . 11
⊢ (ℂ
× {(𝑓‘0)}) =
(𝑥 ∈ ℂ ↦
(𝑓‘0)) |
53 | 46, 52 | eqtrdi 2794 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ 𝑓 = (𝑥 ∈ ℂ ↦ (𝑓‘0))) |
54 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐺‘𝑦) → (𝑓‘0) = (𝑓‘0)) |
55 | 50, 51, 53, 54 | fmptco 7001 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ (𝑓 ∘ 𝐺) = (𝑦 ∈ ℂ ↦ (𝑓‘0))) |
56 | 43, 46, 55 | 3eqtr4a 2804 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ 𝑓 = (𝑓 ∘ 𝐺)) |
57 | 56 | fveq2d 6778 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ (deg‘𝑓) =
(deg‘(𝑓 ∘ 𝐺))) |
58 | 42, 57 | eqtr2d 2779 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧
(deg‘𝑓) ≤ 0))
→ (deg‘(𝑓
∘ 𝐺)) =
((deg‘𝑓) ·
𝑁)) |
59 | 58 | expr 457 |
. . . . 5
⊢ ((𝜑 ∧ 𝑓 ∈ (Poly‘ℂ)) →
((deg‘𝑓) ≤ 0
→ (deg‘(𝑓
∘ 𝐺)) =
((deg‘𝑓) ·
𝑁))) |
60 | 59 | ralrimiva 3103 |
. . . 4
⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 →
(deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) |
61 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔)) |
62 | 61 | breq1d 5084 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑔) ≤ 𝑑)) |
63 | | coeq1 5766 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝑓 ∘ 𝐺) = (𝑔 ∘ 𝐺)) |
64 | 63 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (deg‘(𝑓 ∘ 𝐺)) = (deg‘(𝑔 ∘ 𝐺))) |
65 | 61 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((deg‘𝑓) · 𝑁) = ((deg‘𝑔) · 𝑁)) |
66 | 64, 65 | eqeq12d 2754 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → ((deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁))) |
67 | 62, 66 | imbi12d 345 |
. . . . . . . 8
⊢ (𝑓 = 𝑔 → (((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) |
68 | 67 | cbvralvw 3383 |
. . . . . . 7
⊢
(∀𝑓 ∈
(Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁))) |
69 | 33 | ad2antrl 725 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) → (deg‘𝑓) ∈
ℕ0) |
70 | 69 | nn0red 12294 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) → (deg‘𝑓) ∈ ℝ) |
71 | | nn0p1nn 12272 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℕ0
→ (𝑑 + 1) ∈
ℕ) |
72 | 71 | ad2antlr 724 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) → (𝑑 + 1) ∈ ℕ) |
73 | 72 | nnred 11988 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) → (𝑑 + 1) ∈ ℝ) |
74 | 70, 73 | leloed 11118 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ (𝑑 + 1) ↔ ((deg‘𝑓) < (𝑑 + 1) ∨ (deg‘𝑓) = (𝑑 + 1)))) |
75 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) → 𝑑 ∈ ℕ0) |
76 | | nn0leltp1 12379 |
. . . . . . . . . . . . 13
⊢
(((deg‘𝑓)
∈ ℕ0 ∧ 𝑑 ∈ ℕ0) →
((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑓) < (𝑑 + 1))) |
77 | 69, 75, 76 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑓) < (𝑑 + 1))) |
78 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑓 → (deg‘𝑔) = (deg‘𝑓)) |
79 | 78 | breq1d 5084 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑓 → ((deg‘𝑔) ≤ 𝑑 ↔ (deg‘𝑓) ≤ 𝑑)) |
80 | | coeq1 5766 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑓 → (𝑔 ∘ 𝐺) = (𝑓 ∘ 𝐺)) |
81 | 80 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑓 → (deg‘(𝑔 ∘ 𝐺)) = (deg‘(𝑓 ∘ 𝐺))) |
82 | 78 | oveq1d 7290 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑓 → ((deg‘𝑔) · 𝑁) = ((deg‘𝑓) · 𝑁)) |
83 | 81, 82 | eqeq12d 2754 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑓 → ((deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁) ↔ (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) |
84 | 79, 83 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑓 → (((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
85 | 84 | rspcva 3559 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁))) → ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) |
86 | 85 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) |
87 | 77, 86 | sylbird 259 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) < (𝑑 + 1) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) |
88 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(deg‘𝑓) =
(deg‘𝑓) |
89 | | simprll 776 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝑓 ∈
(Poly‘ℂ)) |
90 | 1, 25 | sselid 3919 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐺 ∈
(Poly‘ℂ)) |
91 | 90 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝐺 ∈
(Poly‘ℂ)) |
92 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(coeff‘𝑓) =
(coeff‘𝑓) |
93 | | simplr 766 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝑑 ∈ ℕ0) |
94 | | simprr 770 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → (deg‘𝑓) = (𝑑 + 1)) |
95 | | simprlr 777 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁))) |
96 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = ℎ → (deg‘𝑔) = (deg‘ℎ)) |
97 | 96 | breq1d 5084 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = ℎ → ((deg‘𝑔) ≤ 𝑑 ↔ (deg‘ℎ) ≤ 𝑑)) |
98 | | coeq1 5766 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 = ℎ → (𝑔 ∘ 𝐺) = (ℎ ∘ 𝐺)) |
99 | 98 | fveq2d 6778 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = ℎ → (deg‘(𝑔 ∘ 𝐺)) = (deg‘(ℎ ∘ 𝐺))) |
100 | 96 | oveq1d 7290 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = ℎ → ((deg‘𝑔) · 𝑁) = ((deg‘ℎ) · 𝑁)) |
101 | 99, 100 | eqeq12d 2754 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = ℎ → ((deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁) ↔ (deg‘(ℎ ∘ 𝐺)) = ((deg‘ℎ) · 𝑁))) |
102 | 97, 101 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = ℎ → (((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ((deg‘ℎ) ≤ 𝑑 → (deg‘(ℎ ∘ 𝐺)) = ((deg‘ℎ) · 𝑁)))) |
103 | 102 | cbvralvw 3383 |
. . . . . . . . . . . . . 14
⊢
(∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ∀ℎ ∈ (Poly‘ℂ)((deg‘ℎ) ≤ 𝑑 → (deg‘(ℎ ∘ 𝐺)) = ((deg‘ℎ) · 𝑁))) |
104 | 95, 103 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → ∀ℎ ∈ (Poly‘ℂ)((deg‘ℎ) ≤ 𝑑 → (deg‘(ℎ ∘ 𝐺)) = ((deg‘ℎ) · 𝑁))) |
105 | 88, 24, 89, 91, 92, 93, 94, 104 | dgrcolem2 25435 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) |
106 | 105 | expr 457 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) = (𝑑 + 1) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) |
107 | 87, 106 | jaod 856 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) → (((deg‘𝑓) < (𝑑 + 1) ∨ (deg‘𝑓) = (𝑑 + 1)) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) |
108 | 74, 107 | sylbid 239 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ)
∧ ∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) |
109 | 108 | expr 457 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘ℂ))
→ (∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)) → ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
110 | 109 | ralrimdva 3106 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑔 ∈
(Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔 ∘ 𝐺)) = ((deg‘𝑔) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
111 | 68, 110 | syl5bi 241 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑑 ∈ ℕ0) →
(∀𝑓 ∈
(Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
112 | 111 | expcom 414 |
. . . . 5
⊢ (𝑑 ∈ ℕ0
→ (𝜑 →
(∀𝑓 ∈
(Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))))) |
113 | 112 | a2d 29 |
. . . 4
⊢ (𝑑 ∈ ℕ0
→ ((𝜑 →
∀𝑓 ∈
(Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) → (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))))) |
114 | 11, 15, 19, 23, 60, 113 | nn0ind 12415 |
. . 3
⊢ (𝑀 ∈ ℕ0
→ (𝜑 →
∀𝑓 ∈
(Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)))) |
115 | 7, 114 | mpcom 38 |
. 2
⊢ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁))) |
116 | 7 | nn0red 12294 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℝ) |
117 | 116 | leidd 11541 |
. 2
⊢ (𝜑 → 𝑀 ≤ 𝑀) |
118 | | fveq2 6774 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹)) |
119 | 118, 4 | eqtr4di 2796 |
. . . . 5
⊢ (𝑓 = 𝐹 → (deg‘𝑓) = 𝑀) |
120 | 119 | breq1d 5084 |
. . . 4
⊢ (𝑓 = 𝐹 → ((deg‘𝑓) ≤ 𝑀 ↔ 𝑀 ≤ 𝑀)) |
121 | | coeq1 5766 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓 ∘ 𝐺) = (𝐹 ∘ 𝐺)) |
122 | 121 | fveq2d 6778 |
. . . . 5
⊢ (𝑓 = 𝐹 → (deg‘(𝑓 ∘ 𝐺)) = (deg‘(𝐹 ∘ 𝐺))) |
123 | 119 | oveq1d 7290 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((deg‘𝑓) · 𝑁) = (𝑀 · 𝑁)) |
124 | 122, 123 | eqeq12d 2754 |
. . . 4
⊢ (𝑓 = 𝐹 → ((deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁))) |
125 | 120, 124 | imbi12d 345 |
. . 3
⊢ (𝑓 = 𝐹 → (((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ (𝑀 ≤ 𝑀 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)))) |
126 | 125 | rspcv 3557 |
. 2
⊢ (𝐹 ∈ (Poly‘ℂ)
→ (∀𝑓 ∈
(Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓 ∘ 𝐺)) = ((deg‘𝑓) · 𝑁)) → (𝑀 ≤ 𝑀 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)))) |
127 | 3, 115, 117, 126 | syl3c 66 |
1
⊢ (𝜑 → (deg‘(𝐹 ∘ 𝐺)) = (𝑀 · 𝑁)) |