MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrco Structured version   Visualization version   GIF version

Theorem dgrco 26197
Description: The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrco.1 𝑀 = (deg‘𝐹)
dgrco.2 𝑁 = (deg‘𝐺)
dgrco.3 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrco.4 (𝜑𝐺 ∈ (Poly‘𝑆))
Assertion
Ref Expression
dgrco (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))

Proof of Theorem dgrco
Dummy variables 𝑓 𝑥 𝑦 𝑑 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 26121 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 dgrco.3 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
31, 2sselid 3935 . 2 (𝜑𝐹 ∈ (Poly‘ℂ))
4 dgrco.1 . . . 4 𝑀 = (deg‘𝐹)
5 dgrcl 26154 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
62, 5syl 17 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℕ0)
74, 6eqeltrid 2832 . . 3 (𝜑𝑀 ∈ ℕ0)
8 breq2 5099 . . . . . . 7 (𝑥 = 0 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 0))
98imbi1d 341 . . . . . 6 (𝑥 = 0 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
109ralbidv 3152 . . . . 5 (𝑥 = 0 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1110imbi2d 340 . . . 4 (𝑥 = 0 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
12 breq2 5099 . . . . . . 7 (𝑥 = 𝑑 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 𝑑))
1312imbi1d 341 . . . . . 6 (𝑥 = 𝑑 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1413ralbidv 3152 . . . . 5 (𝑥 = 𝑑 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1514imbi2d 340 . . . 4 (𝑥 = 𝑑 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
16 breq2 5099 . . . . . . 7 (𝑥 = (𝑑 + 1) → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ (𝑑 + 1)))
1716imbi1d 341 . . . . . 6 (𝑥 = (𝑑 + 1) → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1817ralbidv 3152 . . . . 5 (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1918imbi2d 340 . . . 4 (𝑥 = (𝑑 + 1) → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
20 breq2 5099 . . . . . . 7 (𝑥 = 𝑀 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 𝑀))
2120imbi1d 341 . . . . . 6 (𝑥 = 𝑀 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
2221ralbidv 3152 . . . . 5 (𝑥 = 𝑀 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
2322imbi2d 340 . . . 4 (𝑥 = 𝑀 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
24 dgrco.2 . . . . . . . . . . . 12 𝑁 = (deg‘𝐺)
25 dgrco.4 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ (Poly‘𝑆))
26 dgrcl 26154 . . . . . . . . . . . . 13 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
2725, 26syl 17 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐺) ∈ ℕ0)
2824, 27eqeltrid 2832 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2928nn0cnd 12465 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
3029adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑁 ∈ ℂ)
3130mul02d 11332 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (0 · 𝑁) = 0)
32 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) ≤ 0)
33 dgrcl 26154 . . . . . . . . . . . 12 (𝑓 ∈ (Poly‘ℂ) → (deg‘𝑓) ∈ ℕ0)
3433ad2antrl 728 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) ∈ ℕ0)
3534nn0ge0d 12466 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 0 ≤ (deg‘𝑓))
3634nn0red 12464 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) ∈ ℝ)
37 0re 11136 . . . . . . . . . . 11 0 ∈ ℝ
38 letri3 11219 . . . . . . . . . . 11 (((deg‘𝑓) ∈ ℝ ∧ 0 ∈ ℝ) → ((deg‘𝑓) = 0 ↔ ((deg‘𝑓) ≤ 0 ∧ 0 ≤ (deg‘𝑓))))
3936, 37, 38sylancl 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) = 0 ↔ ((deg‘𝑓) ≤ 0 ∧ 0 ≤ (deg‘𝑓))))
4032, 35, 39mpbir2and 713 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) = 0)
4140oveq1d 7368 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) · 𝑁) = (0 · 𝑁))
4231, 41, 403eqtr4d 2774 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) · 𝑁) = (deg‘𝑓))
43 fconstmpt 5685 . . . . . . . . 9 (ℂ × {(𝑓‘0)}) = (𝑦 ∈ ℂ ↦ (𝑓‘0))
44 0dgrb 26167 . . . . . . . . . . 11 (𝑓 ∈ (Poly‘ℂ) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)})))
4544ad2antrl 728 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)})))
4640, 45mpbid 232 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑓 = (ℂ × {(𝑓‘0)}))
4725adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝐺 ∈ (Poly‘𝑆))
48 plyf 26119 . . . . . . . . . . . 12 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
4947, 48syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝐺:ℂ⟶ℂ)
5049ffvelcdmda 7022 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) ∧ 𝑦 ∈ ℂ) → (𝐺𝑦) ∈ ℂ)
5149feqmptd 6895 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝐺 = (𝑦 ∈ ℂ ↦ (𝐺𝑦)))
52 fconstmpt 5685 . . . . . . . . . . 11 (ℂ × {(𝑓‘0)}) = (𝑥 ∈ ℂ ↦ (𝑓‘0))
5346, 52eqtrdi 2780 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑓 = (𝑥 ∈ ℂ ↦ (𝑓‘0)))
54 eqidd 2730 . . . . . . . . . 10 (𝑥 = (𝐺𝑦) → (𝑓‘0) = (𝑓‘0))
5550, 51, 53, 54fmptco 7067 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (𝑓𝐺) = (𝑦 ∈ ℂ ↦ (𝑓‘0)))
5643, 46, 553eqtr4a 2790 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑓 = (𝑓𝐺))
5756fveq2d 6830 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) = (deg‘(𝑓𝐺)))
5842, 57eqtr2d 2765 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))
5958expr 456 . . . . 5 ((𝜑𝑓 ∈ (Poly‘ℂ)) → ((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
6059ralrimiva 3121 . . . 4 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
61 fveq2 6826 . . . . . . . . . 10 (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔))
6261breq1d 5105 . . . . . . . . 9 (𝑓 = 𝑔 → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑔) ≤ 𝑑))
63 coeq1 5804 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝐺) = (𝑔𝐺))
6463fveq2d 6830 . . . . . . . . . 10 (𝑓 = 𝑔 → (deg‘(𝑓𝐺)) = (deg‘(𝑔𝐺)))
6561oveq1d 7368 . . . . . . . . . 10 (𝑓 = 𝑔 → ((deg‘𝑓) · 𝑁) = ((deg‘𝑔) · 𝑁))
6664, 65eqeq12d 2745 . . . . . . . . 9 (𝑓 = 𝑔 → ((deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))
6762, 66imbi12d 344 . . . . . . . 8 (𝑓 = 𝑔 → (((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))))
6867cbvralvw 3207 . . . . . . 7 (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))
6933ad2antrl 728 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (deg‘𝑓) ∈ ℕ0)
7069nn0red 12464 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (deg‘𝑓) ∈ ℝ)
71 nn0p1nn 12441 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ)
7271ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (𝑑 + 1) ∈ ℕ)
7372nnred 12161 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (𝑑 + 1) ∈ ℝ)
7470, 73leloed 11277 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ (𝑑 + 1) ↔ ((deg‘𝑓) < (𝑑 + 1) ∨ (deg‘𝑓) = (𝑑 + 1))))
75 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → 𝑑 ∈ ℕ0)
76 nn0leltp1 12553 . . . . . . . . . . . . 13 (((deg‘𝑓) ∈ ℕ0𝑑 ∈ ℕ0) → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑓) < (𝑑 + 1)))
7769, 75, 76syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑓) < (𝑑 + 1)))
78 fveq2 6826 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → (deg‘𝑔) = (deg‘𝑓))
7978breq1d 5105 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → ((deg‘𝑔) ≤ 𝑑 ↔ (deg‘𝑓) ≤ 𝑑))
80 coeq1 5804 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → (𝑔𝐺) = (𝑓𝐺))
8180fveq2d 6830 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → (deg‘(𝑔𝐺)) = (deg‘(𝑓𝐺)))
8278oveq1d 7368 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ((deg‘𝑔) · 𝑁) = ((deg‘𝑓) · 𝑁))
8381, 82eqeq12d 2745 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → ((deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁) ↔ (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
8479, 83imbi12d 344 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
8584rspcva 3577 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) → ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
8685adantl 481 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
8777, 86sylbird 260 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) < (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
88 eqid 2729 . . . . . . . . . . . . 13 (deg‘𝑓) = (deg‘𝑓)
89 simprll 778 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝑓 ∈ (Poly‘ℂ))
901, 25sselid 3935 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ (Poly‘ℂ))
9190ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝐺 ∈ (Poly‘ℂ))
92 eqid 2729 . . . . . . . . . . . . 13 (coeff‘𝑓) = (coeff‘𝑓)
93 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝑑 ∈ ℕ0)
94 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → (deg‘𝑓) = (𝑑 + 1))
95 simprlr 779 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))
96 fveq2 6826 . . . . . . . . . . . . . . . . 17 (𝑔 = → (deg‘𝑔) = (deg‘))
9796breq1d 5105 . . . . . . . . . . . . . . . 16 (𝑔 = → ((deg‘𝑔) ≤ 𝑑 ↔ (deg‘) ≤ 𝑑))
98 coeq1 5804 . . . . . . . . . . . . . . . . . 18 (𝑔 = → (𝑔𝐺) = (𝐺))
9998fveq2d 6830 . . . . . . . . . . . . . . . . 17 (𝑔 = → (deg‘(𝑔𝐺)) = (deg‘(𝐺)))
10096oveq1d 7368 . . . . . . . . . . . . . . . . 17 (𝑔 = → ((deg‘𝑔) · 𝑁) = ((deg‘) · 𝑁))
10199, 100eqeq12d 2745 . . . . . . . . . . . . . . . 16 (𝑔 = → ((deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁) ↔ (deg‘(𝐺)) = ((deg‘) · 𝑁)))
10297, 101imbi12d 344 . . . . . . . . . . . . . . 15 (𝑔 = → (((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ((deg‘) ≤ 𝑑 → (deg‘(𝐺)) = ((deg‘) · 𝑁))))
103102cbvralvw 3207 . . . . . . . . . . . . . 14 (∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ∀ ∈ (Poly‘ℂ)((deg‘) ≤ 𝑑 → (deg‘(𝐺)) = ((deg‘) · 𝑁)))
10495, 103sylib 218 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → ∀ ∈ (Poly‘ℂ)((deg‘) ≤ 𝑑 → (deg‘(𝐺)) = ((deg‘) · 𝑁)))
10588, 24, 89, 91, 92, 93, 94, 104dgrcolem2 26196 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))
106105expr 456 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) = (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
10787, 106jaod 859 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (((deg‘𝑓) < (𝑑 + 1) ∨ (deg‘𝑓) = (𝑑 + 1)) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
10874, 107sylbid 240 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
109108expr 456 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘ℂ)) → (∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) → ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
110109ralrimdva 3129 . . . . . . 7 ((𝜑𝑑 ∈ ℕ0) → (∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
11168, 110biimtrid 242 . . . . . 6 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
112111expcom 413 . . . . 5 (𝑑 ∈ ℕ0 → (𝜑 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
113112a2d 29 . . . 4 (𝑑 ∈ ℕ0 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) → (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
11411, 15, 19, 23, 60, 113nn0ind 12589 . . 3 (𝑀 ∈ ℕ0 → (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1157, 114mpcom 38 . 2 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
1167nn0red 12464 . . 3 (𝜑𝑀 ∈ ℝ)
117116leidd 11704 . 2 (𝜑𝑀𝑀)
118 fveq2 6826 . . . . . 6 (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹))
119118, 4eqtr4di 2782 . . . . 5 (𝑓 = 𝐹 → (deg‘𝑓) = 𝑀)
120119breq1d 5105 . . . 4 (𝑓 = 𝐹 → ((deg‘𝑓) ≤ 𝑀𝑀𝑀))
121 coeq1 5804 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝐺) = (𝐹𝐺))
122121fveq2d 6830 . . . . 5 (𝑓 = 𝐹 → (deg‘(𝑓𝐺)) = (deg‘(𝐹𝐺)))
123119oveq1d 7368 . . . . 5 (𝑓 = 𝐹 → ((deg‘𝑓) · 𝑁) = (𝑀 · 𝑁))
124122, 123eqeq12d 2745 . . . 4 (𝑓 = 𝐹 → ((deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘(𝐹𝐺)) = (𝑀 · 𝑁)))
125120, 124imbi12d 344 . . 3 (𝑓 = 𝐹 → (((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ (𝑀𝑀 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))))
126125rspcv 3575 . 2 (𝐹 ∈ (Poly‘ℂ) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) → (𝑀𝑀 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))))
1273, 115, 117, 126syl3c 66 1 (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  {csn 4579   class class class wbr 5095  cmpt 5176   × cxp 5621  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cn 12146  0cn0 12402  Polycply 26105  coeffccoe 26107  degcdgr 26108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-0p 25587  df-ply 26109  df-coe 26111  df-dgr 26112
This theorem is referenced by:  taylply2  26291  taylply2OLD  26292  ftalem7  27005
  Copyright terms: Public domain W3C validator