MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dgrco Structured version   Visualization version   GIF version

Theorem dgrco 25781
Description: The degree of a composition of two polynomials is the product of the degrees. (Contributed by Mario Carneiro, 15-Sep-2014.)
Hypotheses
Ref Expression
dgrco.1 𝑀 = (deg‘𝐹)
dgrco.2 𝑁 = (deg‘𝐺)
dgrco.3 (𝜑𝐹 ∈ (Poly‘𝑆))
dgrco.4 (𝜑𝐺 ∈ (Poly‘𝑆))
Assertion
Ref Expression
dgrco (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))

Proof of Theorem dgrco
Dummy variables 𝑓 𝑥 𝑦 𝑑 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 25706 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2 dgrco.3 . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
31, 2sselid 3980 . 2 (𝜑𝐹 ∈ (Poly‘ℂ))
4 dgrco.1 . . . 4 𝑀 = (deg‘𝐹)
5 dgrcl 25739 . . . . 5 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
62, 5syl 17 . . . 4 (𝜑 → (deg‘𝐹) ∈ ℕ0)
74, 6eqeltrid 2838 . . 3 (𝜑𝑀 ∈ ℕ0)
8 breq2 5152 . . . . . . 7 (𝑥 = 0 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 0))
98imbi1d 342 . . . . . 6 (𝑥 = 0 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
109ralbidv 3178 . . . . 5 (𝑥 = 0 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1110imbi2d 341 . . . 4 (𝑥 = 0 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
12 breq2 5152 . . . . . . 7 (𝑥 = 𝑑 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 𝑑))
1312imbi1d 342 . . . . . 6 (𝑥 = 𝑑 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1413ralbidv 3178 . . . . 5 (𝑥 = 𝑑 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1514imbi2d 341 . . . 4 (𝑥 = 𝑑 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
16 breq2 5152 . . . . . . 7 (𝑥 = (𝑑 + 1) → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ (𝑑 + 1)))
1716imbi1d 342 . . . . . 6 (𝑥 = (𝑑 + 1) → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1817ralbidv 3178 . . . . 5 (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1918imbi2d 341 . . . 4 (𝑥 = (𝑑 + 1) → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
20 breq2 5152 . . . . . . 7 (𝑥 = 𝑀 → ((deg‘𝑓) ≤ 𝑥 ↔ (deg‘𝑓) ≤ 𝑀))
2120imbi1d 342 . . . . . 6 (𝑥 = 𝑀 → (((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
2221ralbidv 3178 . . . . 5 (𝑥 = 𝑀 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
2322imbi2d 341 . . . 4 (𝑥 = 𝑀 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑥 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) ↔ (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
24 dgrco.2 . . . . . . . . . . . 12 𝑁 = (deg‘𝐺)
25 dgrco.4 . . . . . . . . . . . . 13 (𝜑𝐺 ∈ (Poly‘𝑆))
26 dgrcl 25739 . . . . . . . . . . . . 13 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
2725, 26syl 17 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐺) ∈ ℕ0)
2824, 27eqeltrid 2838 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2928nn0cnd 12531 . . . . . . . . . 10 (𝜑𝑁 ∈ ℂ)
3029adantr 482 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑁 ∈ ℂ)
3130mul02d 11409 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (0 · 𝑁) = 0)
32 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) ≤ 0)
33 dgrcl 25739 . . . . . . . . . . . 12 (𝑓 ∈ (Poly‘ℂ) → (deg‘𝑓) ∈ ℕ0)
3433ad2antrl 727 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) ∈ ℕ0)
3534nn0ge0d 12532 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 0 ≤ (deg‘𝑓))
3634nn0red 12530 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) ∈ ℝ)
37 0re 11213 . . . . . . . . . . 11 0 ∈ ℝ
38 letri3 11296 . . . . . . . . . . 11 (((deg‘𝑓) ∈ ℝ ∧ 0 ∈ ℝ) → ((deg‘𝑓) = 0 ↔ ((deg‘𝑓) ≤ 0 ∧ 0 ≤ (deg‘𝑓))))
3936, 37, 38sylancl 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) = 0 ↔ ((deg‘𝑓) ≤ 0 ∧ 0 ≤ (deg‘𝑓))))
4032, 35, 39mpbir2and 712 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) = 0)
4140oveq1d 7421 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) · 𝑁) = (0 · 𝑁))
4231, 41, 403eqtr4d 2783 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) · 𝑁) = (deg‘𝑓))
43 fconstmpt 5737 . . . . . . . . 9 (ℂ × {(𝑓‘0)}) = (𝑦 ∈ ℂ ↦ (𝑓‘0))
44 0dgrb 25752 . . . . . . . . . . 11 (𝑓 ∈ (Poly‘ℂ) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)})))
4544ad2antrl 727 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → ((deg‘𝑓) = 0 ↔ 𝑓 = (ℂ × {(𝑓‘0)})))
4640, 45mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑓 = (ℂ × {(𝑓‘0)}))
4725adantr 482 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝐺 ∈ (Poly‘𝑆))
48 plyf 25704 . . . . . . . . . . . 12 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
4947, 48syl 17 . . . . . . . . . . 11 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝐺:ℂ⟶ℂ)
5049ffvelcdmda 7084 . . . . . . . . . 10 (((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) ∧ 𝑦 ∈ ℂ) → (𝐺𝑦) ∈ ℂ)
5149feqmptd 6958 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝐺 = (𝑦 ∈ ℂ ↦ (𝐺𝑦)))
52 fconstmpt 5737 . . . . . . . . . . 11 (ℂ × {(𝑓‘0)}) = (𝑥 ∈ ℂ ↦ (𝑓‘0))
5346, 52eqtrdi 2789 . . . . . . . . . 10 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑓 = (𝑥 ∈ ℂ ↦ (𝑓‘0)))
54 eqidd 2734 . . . . . . . . . 10 (𝑥 = (𝐺𝑦) → (𝑓‘0) = (𝑓‘0))
5550, 51, 53, 54fmptco 7124 . . . . . . . . 9 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (𝑓𝐺) = (𝑦 ∈ ℂ ↦ (𝑓‘0)))
5643, 46, 553eqtr4a 2799 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → 𝑓 = (𝑓𝐺))
5756fveq2d 6893 . . . . . . 7 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘𝑓) = (deg‘(𝑓𝐺)))
5842, 57eqtr2d 2774 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (Poly‘ℂ) ∧ (deg‘𝑓) ≤ 0)) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))
5958expr 458 . . . . 5 ((𝜑𝑓 ∈ (Poly‘ℂ)) → ((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
6059ralrimiva 3147 . . . 4 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 0 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
61 fveq2 6889 . . . . . . . . . 10 (𝑓 = 𝑔 → (deg‘𝑓) = (deg‘𝑔))
6261breq1d 5158 . . . . . . . . 9 (𝑓 = 𝑔 → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑔) ≤ 𝑑))
63 coeq1 5856 . . . . . . . . . . 11 (𝑓 = 𝑔 → (𝑓𝐺) = (𝑔𝐺))
6463fveq2d 6893 . . . . . . . . . 10 (𝑓 = 𝑔 → (deg‘(𝑓𝐺)) = (deg‘(𝑔𝐺)))
6561oveq1d 7421 . . . . . . . . . 10 (𝑓 = 𝑔 → ((deg‘𝑓) · 𝑁) = ((deg‘𝑔) · 𝑁))
6664, 65eqeq12d 2749 . . . . . . . . 9 (𝑓 = 𝑔 → ((deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))
6762, 66imbi12d 345 . . . . . . . 8 (𝑓 = 𝑔 → (((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))))
6867cbvralvw 3235 . . . . . . 7 (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))
6933ad2antrl 727 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (deg‘𝑓) ∈ ℕ0)
7069nn0red 12530 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (deg‘𝑓) ∈ ℝ)
71 nn0p1nn 12508 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ)
7271ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (𝑑 + 1) ∈ ℕ)
7372nnred 12224 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (𝑑 + 1) ∈ ℝ)
7470, 73leloed 11354 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ (𝑑 + 1) ↔ ((deg‘𝑓) < (𝑑 + 1) ∨ (deg‘𝑓) = (𝑑 + 1))))
75 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → 𝑑 ∈ ℕ0)
76 nn0leltp1 12618 . . . . . . . . . . . . 13 (((deg‘𝑓) ∈ ℕ0𝑑 ∈ ℕ0) → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑓) < (𝑑 + 1)))
7769, 75, 76syl2anc 585 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ 𝑑 ↔ (deg‘𝑓) < (𝑑 + 1)))
78 fveq2 6889 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → (deg‘𝑔) = (deg‘𝑓))
7978breq1d 5158 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → ((deg‘𝑔) ≤ 𝑑 ↔ (deg‘𝑓) ≤ 𝑑))
80 coeq1 5856 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑓 → (𝑔𝐺) = (𝑓𝐺))
8180fveq2d 6893 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → (deg‘(𝑔𝐺)) = (deg‘(𝑓𝐺)))
8278oveq1d 7421 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑓 → ((deg‘𝑔) · 𝑁) = ((deg‘𝑓) · 𝑁))
8381, 82eqeq12d 2749 . . . . . . . . . . . . . . 15 (𝑔 = 𝑓 → ((deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁) ↔ (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
8479, 83imbi12d 345 . . . . . . . . . . . . . 14 (𝑔 = 𝑓 → (((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
8584rspcva 3611 . . . . . . . . . . . . 13 ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) → ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
8685adantl 483 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
8777, 86sylbird 260 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) < (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
88 eqid 2733 . . . . . . . . . . . . 13 (deg‘𝑓) = (deg‘𝑓)
89 simprll 778 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝑓 ∈ (Poly‘ℂ))
901, 25sselid 3980 . . . . . . . . . . . . . 14 (𝜑𝐺 ∈ (Poly‘ℂ))
9190ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝐺 ∈ (Poly‘ℂ))
92 eqid 2733 . . . . . . . . . . . . 13 (coeff‘𝑓) = (coeff‘𝑓)
93 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → 𝑑 ∈ ℕ0)
94 simprr 772 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → (deg‘𝑓) = (𝑑 + 1))
95 simprlr 779 . . . . . . . . . . . . . 14 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))
96 fveq2 6889 . . . . . . . . . . . . . . . . 17 (𝑔 = → (deg‘𝑔) = (deg‘))
9796breq1d 5158 . . . . . . . . . . . . . . . 16 (𝑔 = → ((deg‘𝑔) ≤ 𝑑 ↔ (deg‘) ≤ 𝑑))
98 coeq1 5856 . . . . . . . . . . . . . . . . . 18 (𝑔 = → (𝑔𝐺) = (𝐺))
9998fveq2d 6893 . . . . . . . . . . . . . . . . 17 (𝑔 = → (deg‘(𝑔𝐺)) = (deg‘(𝐺)))
10096oveq1d 7421 . . . . . . . . . . . . . . . . 17 (𝑔 = → ((deg‘𝑔) · 𝑁) = ((deg‘) · 𝑁))
10199, 100eqeq12d 2749 . . . . . . . . . . . . . . . 16 (𝑔 = → ((deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁) ↔ (deg‘(𝐺)) = ((deg‘) · 𝑁)))
10297, 101imbi12d 345 . . . . . . . . . . . . . . 15 (𝑔 = → (((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ((deg‘) ≤ 𝑑 → (deg‘(𝐺)) = ((deg‘) · 𝑁))))
103102cbvralvw 3235 . . . . . . . . . . . . . 14 (∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) ↔ ∀ ∈ (Poly‘ℂ)((deg‘) ≤ 𝑑 → (deg‘(𝐺)) = ((deg‘) · 𝑁)))
10495, 103sylib 217 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → ∀ ∈ (Poly‘ℂ)((deg‘) ≤ 𝑑 → (deg‘(𝐺)) = ((deg‘) · 𝑁)))
10588, 24, 89, 91, 92, 93, 94, 104dgrcolem2 25780 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ ((𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁))) ∧ (deg‘𝑓) = (𝑑 + 1))) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))
106105expr 458 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) = (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
10787, 106jaod 858 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → (((deg‘𝑓) < (𝑑 + 1) ∨ (deg‘𝑓) = (𝑑 + 1)) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
10874, 107sylbid 239 . . . . . . . . 9 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑓 ∈ (Poly‘ℂ) ∧ ∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)))) → ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
109108expr 458 . . . . . . . 8 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑓 ∈ (Poly‘ℂ)) → (∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) → ((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
110109ralrimdva 3155 . . . . . . 7 ((𝜑𝑑 ∈ ℕ0) → (∀𝑔 ∈ (Poly‘ℂ)((deg‘𝑔) ≤ 𝑑 → (deg‘(𝑔𝐺)) = ((deg‘𝑔) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
11168, 110biimtrid 241 . . . . . 6 ((𝜑𝑑 ∈ ℕ0) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
112111expcom 415 . . . . 5 (𝑑 ∈ ℕ0 → (𝜑 → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
113112a2d 29 . . . 4 (𝑑 ∈ ℕ0 → ((𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑑 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))) → (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ (𝑑 + 1) → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))))
11411, 15, 19, 23, 60, 113nn0ind 12654 . . 3 (𝑀 ∈ ℕ0 → (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁))))
1157, 114mpcom 38 . 2 (𝜑 → ∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)))
1167nn0red 12530 . . 3 (𝜑𝑀 ∈ ℝ)
117116leidd 11777 . 2 (𝜑𝑀𝑀)
118 fveq2 6889 . . . . . 6 (𝑓 = 𝐹 → (deg‘𝑓) = (deg‘𝐹))
119118, 4eqtr4di 2791 . . . . 5 (𝑓 = 𝐹 → (deg‘𝑓) = 𝑀)
120119breq1d 5158 . . . 4 (𝑓 = 𝐹 → ((deg‘𝑓) ≤ 𝑀𝑀𝑀))
121 coeq1 5856 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝐺) = (𝐹𝐺))
122121fveq2d 6893 . . . . 5 (𝑓 = 𝐹 → (deg‘(𝑓𝐺)) = (deg‘(𝐹𝐺)))
123119oveq1d 7421 . . . . 5 (𝑓 = 𝐹 → ((deg‘𝑓) · 𝑁) = (𝑀 · 𝑁))
124122, 123eqeq12d 2749 . . . 4 (𝑓 = 𝐹 → ((deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁) ↔ (deg‘(𝐹𝐺)) = (𝑀 · 𝑁)))
125120, 124imbi12d 345 . . 3 (𝑓 = 𝐹 → (((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) ↔ (𝑀𝑀 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))))
126125rspcv 3609 . 2 (𝐹 ∈ (Poly‘ℂ) → (∀𝑓 ∈ (Poly‘ℂ)((deg‘𝑓) ≤ 𝑀 → (deg‘(𝑓𝐺)) = ((deg‘𝑓) · 𝑁)) → (𝑀𝑀 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))))
1273, 115, 117, 126syl3c 66 1 (𝜑 → (deg‘(𝐹𝐺)) = (𝑀 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wral 3062  {csn 4628   class class class wbr 5148  cmpt 5231   × cxp 5674  ccom 5680  wf 6537  cfv 6541  (class class class)co 7406  cc 11105  cr 11106  0cc0 11107  1c1 11108   + caddc 11110   · cmul 11112   < clt 11245  cle 11246  cn 12209  0cn0 12469  Polycply 25690  coeffccoe 25692  degcdgr 25693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-sum 15630  df-0p 25179  df-ply 25694  df-coe 25696  df-dgr 25697
This theorem is referenced by:  taylply2  25872  ftalem7  26573
  Copyright terms: Public domain W3C validator