![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgtset | Structured version Visualization version GIF version |
Description: The topology of the symmetric group on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just bijections - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof revised by AV, 30-Mar-2024.) |
Ref | Expression |
---|---|
symggrp.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
Ref | Expression |
---|---|
symgtset | ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . 3 ⊢ (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴) | |
2 | 1 | efmndtset 18759 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘(EndoFMnd‘𝐴))) |
3 | symggrp.1 | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
4 | eqid 2732 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | 3, 4 | symgbas 19237 | . . . 4 ⊢ (Base‘𝐺) = {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} |
6 | fvexd 6906 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) ∈ V) | |
7 | 5, 6 | eqeltrrid 2838 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V) |
8 | eqid 2732 | . . . 4 ⊢ ((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) = ((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) | |
9 | eqid 2732 | . . . 4 ⊢ (TopSet‘(EndoFMnd‘𝐴)) = (TopSet‘(EndoFMnd‘𝐴)) | |
10 | 8, 9 | resstset 17309 | . . 3 ⊢ ({𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V → (TopSet‘(EndoFMnd‘𝐴)) = (TopSet‘((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}))) |
11 | 7, 10 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (TopSet‘(EndoFMnd‘𝐴)) = (TopSet‘((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}))) |
12 | eqid 2732 | . . . . . 6 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} = {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} | |
13 | 3, 12 | symgval 19235 | . . . . 5 ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) |
14 | 13 | eqcomi 2741 | . . . 4 ⊢ ((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) = 𝐺 |
15 | 14 | fveq2i 6894 | . . 3 ⊢ (TopSet‘((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴})) = (TopSet‘𝐺) |
16 | 15 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (TopSet‘((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴})) = (TopSet‘𝐺)) |
17 | 2, 11, 16 | 3eqtrd 2776 | 1 ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {cab 2709 Vcvv 3474 𝒫 cpw 4602 {csn 4628 × cxp 5674 –1-1-onto→wf1o 6542 ‘cfv 6543 (class class class)co 7408 Basecbs 17143 ↾s cress 17172 TopSetcts 17202 ∏tcpt 17383 EndoFMndcefmnd 18748 SymGrpcsymg 19233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-tset 17215 df-efmnd 18749 df-symg 19234 |
This theorem is referenced by: symgtopn 19273 |
Copyright terms: Public domain | W3C validator |