![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgtset | Structured version Visualization version GIF version |
Description: The topology of the symmetric group on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just bijections - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof revised by AV, 30-Mar-2024.) |
Ref | Expression |
---|---|
symggrp.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
Ref | Expression |
---|---|
symgtset | ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (EndoFMnd‘𝐴) = (EndoFMnd‘𝐴) | |
2 | 1 | efmndtset 18824 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘(EndoFMnd‘𝐴))) |
3 | symggrp.1 | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
4 | eqid 2728 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | 3, 4 | symgbas 19318 | . . . 4 ⊢ (Base‘𝐺) = {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} |
6 | fvexd 6906 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) ∈ V) | |
7 | 5, 6 | eqeltrrid 2834 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V) |
8 | eqid 2728 | . . . 4 ⊢ ((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) = ((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) | |
9 | eqid 2728 | . . . 4 ⊢ (TopSet‘(EndoFMnd‘𝐴)) = (TopSet‘(EndoFMnd‘𝐴)) | |
10 | 8, 9 | resstset 17339 | . . 3 ⊢ ({𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ∈ V → (TopSet‘(EndoFMnd‘𝐴)) = (TopSet‘((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}))) |
11 | 7, 10 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (TopSet‘(EndoFMnd‘𝐴)) = (TopSet‘((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}))) |
12 | eqid 2728 | . . . . . 6 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} = {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} | |
13 | 3, 12 | symgval 19316 | . . . . 5 ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) |
14 | 13 | eqcomi 2737 | . . . 4 ⊢ ((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴}) = 𝐺 |
15 | 14 | fveq2i 6894 | . . 3 ⊢ (TopSet‘((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴})) = (TopSet‘𝐺) |
16 | 15 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (TopSet‘((EndoFMnd‘𝐴) ↾s {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴})) = (TopSet‘𝐺)) |
17 | 2, 11, 16 | 3eqtrd 2772 | 1 ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {cab 2705 Vcvv 3470 𝒫 cpw 4598 {csn 4624 × cxp 5670 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 Basecbs 17173 ↾s cress 17202 TopSetcts 17232 ∏tcpt 17413 EndoFMndcefmnd 18813 SymGrpcsymg 19314 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-uz 12847 df-fz 13511 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-tset 17245 df-efmnd 18814 df-symg 19315 |
This theorem is referenced by: symgtopn 19354 |
Copyright terms: Public domain | W3C validator |