| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tsetndx | Structured version Visualization version GIF version | ||
| Description: Index value of the df-tset 17292 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| tsetndx | ⊢ (TopSet‘ndx) = 9 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tset 17292 | . 2 ⊢ TopSet = Slot 9 | |
| 2 | 9nn 12346 | . 2 ⊢ 9 ∈ ℕ | |
| 3 | 1, 2 | ndxarg 17215 | 1 ⊢ (TopSet‘ndx) = 9 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ‘cfv 6541 9c9 12310 ndxcnx 17212 TopSetcts 17279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-1cn 11195 ax-addcl 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-slot 17201 df-ndx 17213 df-tset 17292 |
| This theorem is referenced by: tsetndxnn 17370 basendxlttsetndx 17371 tsetndxnplusgndx 17373 tsetndxnmulrndx 17374 tsetndxnstarvndx 17375 slotstnscsi 17376 topgrpstr 17377 slotsdifplendx 17391 otpsstr 17392 dsndxntsetndx 17409 unifndxntsetndx 17416 odrngstr 17419 imasvalstr 17467 ipostr 18543 symgvalstructOLD 19383 cnfldstr 21328 cnfldstrOLD 21343 cnfldfunALTOLDOLD 21355 psrvalstr 21890 indistpsx 22964 setsmsbasOLD 24431 setsmsdsOLD 24433 idlsrgstr 33465 zlmtsetOLD 33923 |
| Copyright terms: Public domain | W3C validator |