![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsetndx | Structured version Visualization version GIF version |
Description: Index value of the df-tset 17326 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tsetndx | ⊢ (TopSet‘ndx) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tset 17326 | . 2 ⊢ TopSet = Slot 9 | |
2 | 9nn 12371 | . 2 ⊢ 9 ∈ ℕ | |
3 | 1, 2 | ndxarg 17239 | 1 ⊢ (TopSet‘ndx) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6569 9c9 12335 ndxcnx 17236 TopSetcts 17313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-1cn 11220 ax-addcl 11222 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-slot 17225 df-ndx 17237 df-tset 17326 |
This theorem is referenced by: tsetndxnn 17409 basendxlttsetndx 17410 tsetndxnplusgndx 17412 tsetndxnmulrndx 17413 tsetndxnstarvndx 17414 slotstnscsi 17415 topgrpstr 17416 slotsdifplendx 17430 otpsstr 17431 dsndxntsetndx 17448 unifndxntsetndx 17455 odrngstr 17458 imasvalstr 17507 ipostr 18596 symgvalstructOLD 19439 cnfldstr 21393 cnfldstrOLD 21408 cnfldfunALTOLDOLD 21420 psrvalstr 21963 indistpsx 23042 tuslemOLD 24301 setsmsbasOLD 24511 setsmsdsOLD 24513 tnglemOLD 24679 tngdsOLD 24694 idlsrgstr 33542 zlmtsetOLD 33958 |
Copyright terms: Public domain | W3C validator |