Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsetndx | Structured version Visualization version GIF version |
Description: Index value of the df-tset 16962 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tsetndx | ⊢ (TopSet‘ndx) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tset 16962 | . 2 ⊢ TopSet = Slot 9 | |
2 | 9nn 12054 | . 2 ⊢ 9 ∈ ℕ | |
3 | 1, 2 | ndxarg 16878 | 1 ⊢ (TopSet‘ndx) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ‘cfv 6430 9c9 12018 ndxcnx 16875 TopSetcts 16949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-1cn 10913 ax-addcl 10915 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-slot 16864 df-ndx 16876 df-tset 16962 |
This theorem is referenced by: tsetndxnn 17045 basendxlttsetndx 17046 tsetndxnplusgndx 17048 tsetndxnmulrndx 17049 tsetndxnstarvndx 17050 slotstnscsi 17051 topgrpstr 17052 slotsdifplendx 17066 otpsstr 17067 dsndxntsetndx 17084 unifndxntsetndx 17091 odrngstr 17094 imasvalstr 17143 ipostr 18228 symgvalstructOLD 18986 cnfldstr 20580 cnfldfunOLD 20591 psrvalstr 21100 indistpsx 22141 tuslemOLD 23400 setsmsbasOLD 23610 setsmsdsOLD 23612 tnglemOLD 23778 tngdsOLD 23793 idlsrgstr 31626 zlmtsetOLD 31894 |
Copyright terms: Public domain | W3C validator |