MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsetndx Structured version   Visualization version   GIF version

Theorem tsetndx 16638
Description: Index value of the df-tset 16563 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
tsetndx (TopSet‘ndx) = 9

Proof of Theorem tsetndx
StepHypRef Expression
1 df-tset 16563 . 2 TopSet = Slot 9
2 9nn 11714 . 2 9 ∈ ℕ
31, 2ndxarg 16487 1 (TopSet‘ndx) = 9
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cfv 6331  9c9 11678  ndxcnx 16459  TopSetcts 16550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-1cn 10573  ax-addcl 10575
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-ov 7136  df-om 7559  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-ndx 16465  df-slot 16466  df-tset 16563
This theorem is referenced by:  topgrpstr  16640  otpsstr  16647  odrngstr  16658  imasvalstr  16704  ipostr  17742  symgvalstruct  18504  psrvalstr  20119  cnfldstr  20523  cnfldfun  20533  indistpsx  21594  tuslem  22852  setsmsbas  23061  setsmsds  23062  tnglem  23225  tngds  23233  zlmtset  31214
  Copyright terms: Public domain W3C validator