![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tsetndx | Structured version Visualization version GIF version |
Description: Index value of the df-tset 17332 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tsetndx | ⊢ (TopSet‘ndx) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tset 17332 | . 2 ⊢ TopSet = Slot 9 | |
2 | 9nn 12393 | . 2 ⊢ 9 ∈ ℕ | |
3 | 1, 2 | ndxarg 17245 | 1 ⊢ (TopSet‘ndx) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ‘cfv 6575 9c9 12357 ndxcnx 17242 TopSetcts 17319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-1cn 11244 ax-addcl 11246 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-om 7906 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-slot 17231 df-ndx 17243 df-tset 17332 |
This theorem is referenced by: tsetndxnn 17415 basendxlttsetndx 17416 tsetndxnplusgndx 17418 tsetndxnmulrndx 17419 tsetndxnstarvndx 17420 slotstnscsi 17421 topgrpstr 17422 slotsdifplendx 17436 otpsstr 17437 dsndxntsetndx 17454 unifndxntsetndx 17461 odrngstr 17464 imasvalstr 17513 ipostr 18601 symgvalstructOLD 19441 cnfldstr 21391 cnfldstrOLD 21406 cnfldfunALTOLDOLD 21418 psrvalstr 21961 indistpsx 23040 tuslemOLD 24299 setsmsbasOLD 24509 setsmsdsOLD 24511 tnglemOLD 24677 tngdsOLD 24692 idlsrgstr 33497 zlmtsetOLD 33913 |
Copyright terms: Public domain | W3C validator |