Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tsetndx | Structured version Visualization version GIF version |
Description: Index value of the df-tset 17026 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
tsetndx | ⊢ (TopSet‘ndx) = 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tset 17026 | . 2 ⊢ TopSet = Slot 9 | |
2 | 9nn 12117 | . 2 ⊢ 9 ∈ ℕ | |
3 | 1, 2 | ndxarg 16942 | 1 ⊢ (TopSet‘ndx) = 9 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ‘cfv 6458 9c9 12081 ndxcnx 16939 TopSetcts 17013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-1cn 10975 ax-addcl 10977 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-slot 16928 df-ndx 16940 df-tset 17026 |
This theorem is referenced by: tsetndxnn 17109 basendxlttsetndx 17110 tsetndxnplusgndx 17112 tsetndxnmulrndx 17113 tsetndxnstarvndx 17114 slotstnscsi 17115 topgrpstr 17116 slotsdifplendx 17130 otpsstr 17131 dsndxntsetndx 17148 unifndxntsetndx 17155 odrngstr 17158 imasvalstr 17207 ipostr 18292 symgvalstructOLD 19050 cnfldstr 20644 cnfldfunALTOLD 20656 psrvalstr 21164 indistpsx 22205 tuslemOLD 23464 setsmsbasOLD 23674 setsmsdsOLD 23676 tnglemOLD 23842 tngdsOLD 23857 idlsrgstr 31692 zlmtsetOLD 31960 |
Copyright terms: Public domain | W3C validator |