ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumwmhm GIF version

Theorem gsumwmhm 13106
Description: Behavior of homomorphisms on finite monoidal sums. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Hypothesis
Ref Expression
gsumwmhm.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
gsumwmhm ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))

Proof of Theorem gsumwmhm
Dummy variables 𝑥 𝑦 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . . . . 5 (0g𝑀) = (0g𝑀)
2 eqid 2196 . . . . 5 (0g𝑁) = (0g𝑁)
31, 2mhm0 13076 . . . 4 (𝐻 ∈ (𝑀 MndHom 𝑁) → (𝐻‘(0g𝑀)) = (0g𝑁))
43ad2antrr 488 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 = ∅) → (𝐻‘(0g𝑀)) = (0g𝑁))
5 oveq2 5930 . . . . . 6 (𝑊 = ∅ → (𝑀 Σg 𝑊) = (𝑀 Σg ∅))
65adantl 277 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 = ∅) → (𝑀 Σg 𝑊) = (𝑀 Σg ∅))
7 mhmrcl1 13071 . . . . . . 7 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝑀 ∈ Mnd)
87ad2antrr 488 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 = ∅) → 𝑀 ∈ Mnd)
91gsum0g 13015 . . . . . 6 (𝑀 ∈ Mnd → (𝑀 Σg ∅) = (0g𝑀))
108, 9syl 14 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 = ∅) → (𝑀 Σg ∅) = (0g𝑀))
116, 10eqtrd 2229 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 = ∅) → (𝑀 Σg 𝑊) = (0g𝑀))
1211fveq2d 5562 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 = ∅) → (𝐻‘(𝑀 Σg 𝑊)) = (𝐻‘(0g𝑀)))
13 coeq2 4824 . . . . . . 7 (𝑊 = ∅ → (𝐻𝑊) = (𝐻 ∘ ∅))
14 co02 5183 . . . . . . 7 (𝐻 ∘ ∅) = ∅
1513, 14eqtrdi 2245 . . . . . 6 (𝑊 = ∅ → (𝐻𝑊) = ∅)
1615oveq2d 5938 . . . . 5 (𝑊 = ∅ → (𝑁 Σg (𝐻𝑊)) = (𝑁 Σg ∅))
1716adantl 277 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 = ∅) → (𝑁 Σg (𝐻𝑊)) = (𝑁 Σg ∅))
18 mhmrcl2 13072 . . . . . 6 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝑁 ∈ Mnd)
1918ad2antrr 488 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 = ∅) → 𝑁 ∈ Mnd)
202gsum0g 13015 . . . . 5 (𝑁 ∈ Mnd → (𝑁 Σg ∅) = (0g𝑁))
2119, 20syl 14 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 = ∅) → (𝑁 Σg ∅) = (0g𝑁))
2217, 21eqtrd 2229 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 = ∅) → (𝑁 Σg (𝐻𝑊)) = (0g𝑁))
234, 12, 223eqtr4d 2239 . 2 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 = ∅) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
247ad2antrr 488 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑀 ∈ Mnd)
25 gsumwmhm.b . . . . . . 7 𝐵 = (Base‘𝑀)
26 eqid 2196 . . . . . . 7 (+g𝑀) = (+g𝑀)
2725, 26mndcl 13040 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
28273expb 1206 . . . . 5 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
2924, 28sylan 283 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑀)𝑦) ∈ 𝐵)
30 wrdf 10926 . . . . . . 7 (𝑊 ∈ Word 𝐵𝑊:(0..^(♯‘𝑊))⟶𝐵)
3130ad2antlr 489 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊:(0..^(♯‘𝑊))⟶𝐵)
32 wrdfin 10939 . . . . . . . . . . . 12 (𝑊 ∈ Word 𝐵𝑊 ∈ Fin)
3332adantl 277 . . . . . . . . . . 11 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → 𝑊 ∈ Fin)
34 hashnncl 10872 . . . . . . . . . . 11 (𝑊 ∈ Fin → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
3533, 34syl 14 . . . . . . . . . 10 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → ((♯‘𝑊) ∈ ℕ ↔ 𝑊 ≠ ∅))
3635biimpar 297 . . . . . . . . 9 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
3736nnzd 9444 . . . . . . . 8 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ)
38 fzoval 10220 . . . . . . . 8 ((♯‘𝑊) ∈ ℤ → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
3937, 38syl 14 . . . . . . 7 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (0..^(♯‘𝑊)) = (0...((♯‘𝑊) − 1)))
4039feq2d 5395 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑊:(0..^(♯‘𝑊))⟶𝐵𝑊:(0...((♯‘𝑊) − 1))⟶𝐵))
4131, 40mpbid 147 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊:(0...((♯‘𝑊) − 1))⟶𝐵)
4241ffvelcdmda 5697 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝑊𝑥) ∈ 𝐵)
43 nnm1nn0 9287 . . . . . 6 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
4436, 43syl 14 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0)
45 nn0uz 9633 . . . . 5 0 = (ℤ‘0)
4644, 45eleqtrdi 2289 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
47 eqid 2196 . . . . . . 7 (+g𝑁) = (+g𝑁)
4825, 26, 47mhmlin 13075 . . . . . 6 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑥𝐵𝑦𝐵) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
49483expb 1206 . . . . 5 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ (𝑥𝐵𝑦𝐵)) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
5049ad4ant14 514 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ (𝑥𝐵𝑦𝐵)) → (𝐻‘(𝑥(+g𝑀)𝑦)) = ((𝐻𝑥)(+g𝑁)(𝐻𝑦)))
5141ffnd 5408 . . . . . 6 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 Fn (0...((♯‘𝑊) − 1)))
52 fvco2 5630 . . . . . 6 ((𝑊 Fn (0...((♯‘𝑊) − 1)) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → ((𝐻𝑊)‘𝑥) = (𝐻‘(𝑊𝑥)))
5351, 52sylan 283 . . . . 5 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → ((𝐻𝑊)‘𝑥) = (𝐻‘(𝑊𝑥)))
5453eqcomd 2202 . . . 4 ((((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) ∧ 𝑥 ∈ (0...((♯‘𝑊) − 1))) → (𝐻‘(𝑊𝑥)) = ((𝐻𝑊)‘𝑥))
55 simplr 528 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑊 ∈ Word 𝐵)
56 coexg 5214 . . . . 5 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻𝑊) ∈ V)
5756adantr 276 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻𝑊) ∈ V)
58 plusgslid 12766 . . . . . . 7 (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ)
5958slotex 12681 . . . . . 6 (𝑀 ∈ Mnd → (+g𝑀) ∈ V)
607, 59syl 14 . . . . 5 (𝐻 ∈ (𝑀 MndHom 𝑁) → (+g𝑀) ∈ V)
6160ad2antrr 488 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (+g𝑀) ∈ V)
6258slotex 12681 . . . . . 6 (𝑁 ∈ Mnd → (+g𝑁) ∈ V)
6318, 62syl 14 . . . . 5 (𝐻 ∈ (𝑀 MndHom 𝑁) → (+g𝑁) ∈ V)
6463ad2antrr 488 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (+g𝑁) ∈ V)
6529, 42, 46, 50, 54, 55, 57, 61, 64seqhomog 10607 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(seq0((+g𝑀), 𝑊)‘((♯‘𝑊) − 1))) = (seq0((+g𝑁), (𝐻𝑊))‘((♯‘𝑊) − 1)))
6625, 26, 24, 46, 41gsumval2 13016 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑀 Σg 𝑊) = (seq0((+g𝑀), 𝑊)‘((♯‘𝑊) − 1)))
6766fveq2d 5562 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(𝑀 Σg 𝑊)) = (𝐻‘(seq0((+g𝑀), 𝑊)‘((♯‘𝑊) − 1))))
68 eqid 2196 . . . 4 (Base‘𝑁) = (Base‘𝑁)
6918ad2antrr 488 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝑁 ∈ Mnd)
7025, 68mhmf 13073 . . . . . 6 (𝐻 ∈ (𝑀 MndHom 𝑁) → 𝐻:𝐵⟶(Base‘𝑁))
7170ad2antrr 488 . . . . 5 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → 𝐻:𝐵⟶(Base‘𝑁))
72 fco 5423 . . . . 5 ((𝐻:𝐵⟶(Base‘𝑁) ∧ 𝑊:(0...((♯‘𝑊) − 1))⟶𝐵) → (𝐻𝑊):(0...((♯‘𝑊) − 1))⟶(Base‘𝑁))
7371, 41, 72syl2anc 411 . . . 4 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻𝑊):(0...((♯‘𝑊) − 1))⟶(Base‘𝑁))
7468, 47, 69, 46, 73gsumval2 13016 . . 3 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝑁 Σg (𝐻𝑊)) = (seq0((+g𝑁), (𝐻𝑊))‘((♯‘𝑊) − 1)))
7565, 67, 743eqtr4d 2239 . 2 (((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) ∧ 𝑊 ≠ ∅) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
76 fin0or 6947 . . . 4 (𝑊 ∈ Fin → (𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊))
77 n0r 3464 . . . . 5 (∃𝑗 𝑗𝑊𝑊 ≠ ∅)
7877orim2i 762 . . . 4 ((𝑊 = ∅ ∨ ∃𝑗 𝑗𝑊) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
7976, 78syl 14 . . 3 (𝑊 ∈ Fin → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
8033, 79syl 14 . 2 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝑊 = ∅ ∨ 𝑊 ≠ ∅))
8123, 75, 80mpjaodan 799 1 ((𝐻 ∈ (𝑀 MndHom 𝑁) ∧ 𝑊 ∈ Word 𝐵) → (𝐻‘(𝑀 Σg 𝑊)) = (𝑁 Σg (𝐻𝑊)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709   = wceq 1364  wex 1506  wcel 2167  wne 2367  Vcvv 2763  c0 3450  ccom 4667   Fn wfn 5253  wf 5254  cfv 5258  (class class class)co 5922  Fincfn 6799  0cc0 7877  1c1 7878  cmin 8195  cn 8987  0cn0 9246  cz 9323  cuz 9598  ...cfz 10080  ..^cfzo 10214  seqcseq 10524  chash 10852  Word cword 10920  Basecbs 12654  +gcplusg 12731  0gc0g 12903   Σg cgsu 12904  Mndcmnd 13033   MndHom cmhm 13065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-1o 6474  df-er 6592  df-map 6709  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-inn 8988  df-2 9046  df-n0 9247  df-z 9324  df-uz 9599  df-fz 10081  df-fzo 10215  df-seqfrec 10525  df-ihash 10853  df-word 10921  df-ndx 12657  df-slot 12658  df-base 12660  df-plusg 12744  df-0g 12905  df-igsum 12906  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-mhm 13067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator