ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sgmppw GIF version

Theorem sgmppw 15238
Description: The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.)
Assertion
Ref Expression
sgmppw ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃𝑐𝐴)↑𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝑃,𝑘

Proof of Theorem sgmppw
Dummy variables 𝑖 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 999 . . 3 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
2 simp2 1000 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℙ)
3 prmnn 12288 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
42, 3syl 14 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℕ)
5 simp3 1001 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
64, 5nnexpcld 10789 . . 3 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃𝑁) ∈ ℕ)
7 sgmval 15229 . . 3 ((𝐴 ∈ ℂ ∧ (𝑃𝑁) ∈ ℕ) → (𝐴 σ (𝑃𝑁)) = Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝑁)} (𝑛𝑐𝐴))
81, 6, 7syl2anc 411 . 2 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃𝑁)) = Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝑁)} (𝑛𝑐𝐴))
9 oveq1 5930 . . 3 (𝑛 = (𝑃𝑘) → (𝑛𝑐𝐴) = ((𝑃𝑘)↑𝑐𝐴))
10 0zd 9340 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ)
115nn0zd 9448 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
1210, 11fzfigd 10525 . . 3 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (0...𝑁) ∈ Fin)
13 eqid 2196 . . . . 5 (𝑖 ∈ (0...𝑁) ↦ (𝑃𝑖)) = (𝑖 ∈ (0...𝑁) ↦ (𝑃𝑖))
1413dvdsppwf1o 15235 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑖 ∈ (0...𝑁) ↦ (𝑃𝑖)):(0...𝑁)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝑁)})
152, 5, 14syl2anc 411 . . 3 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑖 ∈ (0...𝑁) ↦ (𝑃𝑖)):(0...𝑁)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝑁)})
16 oveq2 5931 . . . 4 (𝑖 = 𝑘 → (𝑃𝑖) = (𝑃𝑘))
17 simpr 110 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁))
184adantr 276 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ ℕ)
19 elfznn0 10191 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
2019adantl 277 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0)
2118, 20nnexpcld 10789 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃𝑘) ∈ ℕ)
2213, 16, 17, 21fvmptd3 5656 . . 3 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑖 ∈ (0...𝑁) ↦ (𝑃𝑖))‘𝑘) = (𝑃𝑘))
23 elrabi 2917 . . . . . 6 (𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝑁)} → 𝑛 ∈ ℕ)
2423adantl 277 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝑁)}) → 𝑛 ∈ ℕ)
2524nnrpd 9771 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝑁)}) → 𝑛 ∈ ℝ+)
261adantr 276 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝑁)}) → 𝐴 ∈ ℂ)
2725, 26rpcncxpcld 15173 . . 3 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝑁)}) → (𝑛𝑐𝐴) ∈ ℂ)
289, 12, 15, 22, 27fsumf1o 11557 . 2 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃𝑁)} (𝑛𝑐𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑃𝑘)↑𝑐𝐴))
2920nn0cnd 9306 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ)
301adantr 276 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ)
3129, 30mulcomd 8050 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 · 𝐴) = (𝐴 · 𝑘))
3231oveq2d 5939 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃𝑐(𝑘 · 𝐴)) = (𝑃𝑐(𝐴 · 𝑘)))
3318nnrpd 9771 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ ℝ+)
3420nn0red 9305 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℝ)
3533, 34, 30cxpmuld 15183 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃𝑐(𝑘 · 𝐴)) = ((𝑃𝑐𝑘)↑𝑐𝐴))
3620nn0zd 9448 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ)
37 cxpexpnn 15142 . . . . . . 7 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℤ) → (𝑃𝑐𝑘) = (𝑃𝑘))
3818, 36, 37syl2anc 411 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃𝑐𝑘) = (𝑃𝑘))
3938oveq1d 5938 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃𝑐𝑘)↑𝑐𝐴) = ((𝑃𝑘)↑𝑐𝐴))
4035, 39eqtrd 2229 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃𝑐(𝑘 · 𝐴)) = ((𝑃𝑘)↑𝑐𝐴))
4133, 30, 20rpcxpmul2d 15178 . . . 4 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃𝑐(𝐴 · 𝑘)) = ((𝑃𝑐𝐴)↑𝑘))
4232, 40, 413eqtr3d 2237 . . 3 (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃𝑘)↑𝑐𝐴) = ((𝑃𝑐𝐴)↑𝑘))
4342sumeq2dv 11535 . 2 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑃𝑘)↑𝑐𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑃𝑐𝐴)↑𝑘))
448, 28, 433eqtrd 2233 1 ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃𝑐𝐴)↑𝑘))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  {crab 2479   class class class wbr 4034  cmpt 4095  1-1-ontowf1o 5258  (class class class)co 5923  cc 7879  0cc0 7881   · cmul 7886  cn 8992  0cn0 9251  cz 9328  ...cfz 10085  cexp 10632  Σcsu 11520  cdvds 11954  cprime 12285  𝑐ccxp 15103   σ csgm 15227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001  ax-pre-suploc 8002  ax-addf 8003  ax-mulf 8004
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-disj 4012  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-of 6136  df-1st 6199  df-2nd 6200  df-recs 6364  df-irdg 6429  df-frec 6450  df-1o 6475  df-2o 6476  df-oadd 6479  df-er 6593  df-map 6710  df-pm 6711  df-en 6801  df-dom 6802  df-fin 6803  df-sup 7051  df-inf 7052  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-xnn0 9315  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-xneg 9849  df-xadd 9850  df-ioo 9969  df-ico 9971  df-icc 9972  df-fz 10086  df-fzo 10220  df-fl 10362  df-mod 10417  df-seqfrec 10542  df-exp 10633  df-fac 10820  df-bc 10842  df-ihash 10870  df-shft 10982  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-clim 11446  df-sumdc 11521  df-ef 11815  df-e 11816  df-dvds 11955  df-gcd 12131  df-prm 12286  df-pc 12464  df-rest 12922  df-topgen 12941  df-psmet 14109  df-xmet 14110  df-met 14111  df-bl 14112  df-mopn 14113  df-top 14244  df-topon 14257  df-bases 14289  df-ntr 14342  df-cn 14434  df-cnp 14435  df-tx 14499  df-cncf 14817  df-limced 14902  df-dvap 14903  df-relog 15104  df-rpcxp 15105  df-sgm 15228
This theorem is referenced by:  1sgmprm  15240  1sgm2ppw  15241
  Copyright terms: Public domain W3C validator