| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sgmppw | GIF version | ||
| Description: The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.) |
| Ref | Expression |
|---|---|
| sgmppw | ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
| 2 | simp2 1001 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℙ) | |
| 3 | prmnn 12502 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℕ) |
| 5 | simp3 1002 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 6 | 4, 5 | nnexpcld 10857 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℕ) |
| 7 | sgmval 15525 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑃↑𝑁) ∈ ℕ) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} (𝑛↑𝑐𝐴)) | |
| 8 | 1, 6, 7 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} (𝑛↑𝑐𝐴)) |
| 9 | oveq1 5963 | . . 3 ⊢ (𝑛 = (𝑃↑𝑘) → (𝑛↑𝑐𝐴) = ((𝑃↑𝑘)↑𝑐𝐴)) | |
| 10 | 0zd 9399 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ) | |
| 11 | 5 | nn0zd 9508 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
| 12 | 10, 11 | fzfigd 10593 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (0...𝑁) ∈ Fin) |
| 13 | eqid 2206 | . . . . 5 ⊢ (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)) = (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)) | |
| 14 | 13 | dvdsppwf1o 15531 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)):(0...𝑁)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) |
| 15 | 2, 5, 14 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)):(0...𝑁)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) |
| 16 | oveq2 5964 | . . . 4 ⊢ (𝑖 = 𝑘 → (𝑃↑𝑖) = (𝑃↑𝑘)) | |
| 17 | simpr 110 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁)) | |
| 18 | 4 | adantr 276 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ ℕ) |
| 19 | elfznn0 10251 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
| 20 | 19 | adantl 277 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 21 | 18, 20 | nnexpcld 10857 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑘) ∈ ℕ) |
| 22 | 13, 16, 17, 21 | fvmptd3 5685 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖))‘𝑘) = (𝑃↑𝑘)) |
| 23 | elrabi 2930 | . . . . . 6 ⊢ (𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} → 𝑛 ∈ ℕ) | |
| 24 | 23 | adantl 277 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) → 𝑛 ∈ ℕ) |
| 25 | 24 | nnrpd 9831 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) → 𝑛 ∈ ℝ+) |
| 26 | 1 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) → 𝐴 ∈ ℂ) |
| 27 | 25, 26 | rpcncxpcld 15469 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) → (𝑛↑𝑐𝐴) ∈ ℂ) |
| 28 | 9, 12, 15, 22, 27 | fsumf1o 11771 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} (𝑛↑𝑐𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑘)↑𝑐𝐴)) |
| 29 | 20 | nn0cnd 9365 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ) |
| 30 | 1 | adantr 276 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
| 31 | 29, 30 | mulcomd 8109 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 · 𝐴) = (𝐴 · 𝑘)) |
| 32 | 31 | oveq2d 5972 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝑘 · 𝐴)) = (𝑃↑𝑐(𝐴 · 𝑘))) |
| 33 | 18 | nnrpd 9831 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ ℝ+) |
| 34 | 20 | nn0red 9364 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℝ) |
| 35 | 33, 34, 30 | cxpmuld 15479 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝑘 · 𝐴)) = ((𝑃↑𝑐𝑘)↑𝑐𝐴)) |
| 36 | 20 | nn0zd 9508 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ) |
| 37 | cxpexpnn 15438 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℤ) → (𝑃↑𝑐𝑘) = (𝑃↑𝑘)) | |
| 38 | 18, 36, 37 | syl2anc 411 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐𝑘) = (𝑃↑𝑘)) |
| 39 | 38 | oveq1d 5971 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃↑𝑐𝑘)↑𝑐𝐴) = ((𝑃↑𝑘)↑𝑐𝐴)) |
| 40 | 35, 39 | eqtrd 2239 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝑘 · 𝐴)) = ((𝑃↑𝑘)↑𝑐𝐴)) |
| 41 | 33, 30, 20 | rpcxpmul2d 15474 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝐴 · 𝑘)) = ((𝑃↑𝑐𝐴)↑𝑘)) |
| 42 | 32, 40, 41 | 3eqtr3d 2247 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃↑𝑘)↑𝑐𝐴) = ((𝑃↑𝑐𝐴)↑𝑘)) |
| 43 | 42 | sumeq2dv 11749 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑘)↑𝑐𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) |
| 44 | 8, 28, 43 | 3eqtrd 2243 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 {crab 2489 class class class wbr 4050 ↦ cmpt 4112 –1-1-onto→wf1o 5278 (class class class)co 5956 ℂcc 7938 0cc0 7940 · cmul 7945 ℕcn 9051 ℕ0cn0 9310 ℤcz 9387 ...cfz 10145 ↑cexp 10700 Σcsu 11734 ∥ cdvds 12168 ℙcprime 12499 ↑𝑐ccxp 15399 σ csgm 15523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-caucvg 8060 ax-pre-suploc 8061 ax-addf 8062 ax-mulf 8063 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-disj 4027 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-isom 5288 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-of 6170 df-1st 6238 df-2nd 6239 df-recs 6403 df-irdg 6468 df-frec 6489 df-1o 6514 df-2o 6515 df-oadd 6518 df-er 6632 df-map 6749 df-pm 6750 df-en 6840 df-dom 6841 df-fin 6842 df-sup 7100 df-inf 7101 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-n0 9311 df-xnn0 9374 df-z 9388 df-uz 9664 df-q 9756 df-rp 9791 df-xneg 9909 df-xadd 9910 df-ioo 10029 df-ico 10031 df-icc 10032 df-fz 10146 df-fzo 10280 df-fl 10430 df-mod 10485 df-seqfrec 10610 df-exp 10701 df-fac 10888 df-bc 10910 df-ihash 10938 df-shft 11196 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 df-clim 11660 df-sumdc 11735 df-ef 12029 df-e 12030 df-dvds 12169 df-gcd 12345 df-prm 12500 df-pc 12678 df-rest 13143 df-topgen 13162 df-psmet 14375 df-xmet 14376 df-met 14377 df-bl 14378 df-mopn 14379 df-top 14540 df-topon 14553 df-bases 14585 df-ntr 14638 df-cn 14730 df-cnp 14731 df-tx 14795 df-cncf 15113 df-limced 15198 df-dvap 15199 df-relog 15400 df-rpcxp 15401 df-sgm 15524 |
| This theorem is referenced by: 1sgmprm 15536 1sgm2ppw 15537 |
| Copyright terms: Public domain | W3C validator |