| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sgmppw | GIF version | ||
| Description: The value of the divisor function at a prime power. (Contributed by Mario Carneiro, 17-May-2016.) |
| Ref | Expression |
|---|---|
| sgmppw | ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
| 2 | simp2 1022 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℙ) | |
| 3 | prmnn 12627 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 4 | 2, 3 | syl 14 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑃 ∈ ℕ) |
| 5 | simp3 1023 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 6 | 4, 5 | nnexpcld 10912 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃↑𝑁) ∈ ℕ) |
| 7 | sgmval 15651 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑃↑𝑁) ∈ ℕ) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} (𝑛↑𝑐𝐴)) | |
| 8 | 1, 6, 7 | syl2anc 411 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} (𝑛↑𝑐𝐴)) |
| 9 | oveq1 6007 | . . 3 ⊢ (𝑛 = (𝑃↑𝑘) → (𝑛↑𝑐𝐴) = ((𝑃↑𝑘)↑𝑐𝐴)) | |
| 10 | 0zd 9454 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 0 ∈ ℤ) | |
| 11 | 5 | nn0zd 9563 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ) |
| 12 | 10, 11 | fzfigd 10648 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (0...𝑁) ∈ Fin) |
| 13 | eqid 2229 | . . . . 5 ⊢ (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)) = (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)) | |
| 14 | 13 | dvdsppwf1o 15657 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)):(0...𝑁)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) |
| 15 | 2, 5, 14 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖)):(0...𝑁)–1-1-onto→{𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) |
| 16 | oveq2 6008 | . . . 4 ⊢ (𝑖 = 𝑘 → (𝑃↑𝑖) = (𝑃↑𝑘)) | |
| 17 | simpr 110 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ (0...𝑁)) | |
| 18 | 4 | adantr 276 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ ℕ) |
| 19 | elfznn0 10306 | . . . . . 6 ⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | |
| 20 | 19 | adantl 277 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 21 | 18, 20 | nnexpcld 10912 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑘) ∈ ℕ) |
| 22 | 13, 16, 17, 21 | fvmptd3 5727 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑖 ∈ (0...𝑁) ↦ (𝑃↑𝑖))‘𝑘) = (𝑃↑𝑘)) |
| 23 | elrabi 2956 | . . . . . 6 ⊢ (𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} → 𝑛 ∈ ℕ) | |
| 24 | 23 | adantl 277 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) → 𝑛 ∈ ℕ) |
| 25 | 24 | nnrpd 9886 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) → 𝑛 ∈ ℝ+) |
| 26 | 1 | adantr 276 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) → 𝐴 ∈ ℂ) |
| 27 | 25, 26 | rpcncxpcld 15595 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)}) → (𝑛↑𝑐𝐴) ∈ ℂ) |
| 28 | 9, 12, 15, 22, 27 | fsumf1o 11896 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → Σ𝑛 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ (𝑃↑𝑁)} (𝑛↑𝑐𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑘)↑𝑐𝐴)) |
| 29 | 20 | nn0cnd 9420 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℂ) |
| 30 | 1 | adantr 276 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝐴 ∈ ℂ) |
| 31 | 29, 30 | mulcomd 8164 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 · 𝐴) = (𝐴 · 𝑘)) |
| 32 | 31 | oveq2d 6016 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝑘 · 𝐴)) = (𝑃↑𝑐(𝐴 · 𝑘))) |
| 33 | 18 | nnrpd 9886 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑃 ∈ ℝ+) |
| 34 | 20 | nn0red 9419 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℝ) |
| 35 | 33, 34, 30 | cxpmuld 15605 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝑘 · 𝐴)) = ((𝑃↑𝑐𝑘)↑𝑐𝐴)) |
| 36 | 20 | nn0zd 9563 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → 𝑘 ∈ ℤ) |
| 37 | cxpexpnn 15564 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℤ) → (𝑃↑𝑐𝑘) = (𝑃↑𝑘)) | |
| 38 | 18, 36, 37 | syl2anc 411 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐𝑘) = (𝑃↑𝑘)) |
| 39 | 38 | oveq1d 6015 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃↑𝑐𝑘)↑𝑐𝐴) = ((𝑃↑𝑘)↑𝑐𝐴)) |
| 40 | 35, 39 | eqtrd 2262 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝑘 · 𝐴)) = ((𝑃↑𝑘)↑𝑐𝐴)) |
| 41 | 33, 30, 20 | rpcxpmul2d 15600 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → (𝑃↑𝑐(𝐴 · 𝑘)) = ((𝑃↑𝑐𝐴)↑𝑘)) |
| 42 | 32, 40, 41 | 3eqtr3d 2270 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑃↑𝑘)↑𝑐𝐴) = ((𝑃↑𝑐𝐴)↑𝑘)) |
| 43 | 42 | sumeq2dv 11874 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑘)↑𝑐𝐴) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) |
| 44 | 8, 28, 43 | 3eqtrd 2266 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝐴 σ (𝑃↑𝑁)) = Σ𝑘 ∈ (0...𝑁)((𝑃↑𝑐𝐴)↑𝑘)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 {crab 2512 class class class wbr 4082 ↦ cmpt 4144 –1-1-onto→wf1o 5316 (class class class)co 6000 ℂcc 7993 0cc0 7995 · cmul 8000 ℕcn 9106 ℕ0cn0 9365 ℤcz 9442 ...cfz 10200 ↑cexp 10755 Σcsu 11859 ∥ cdvds 12293 ℙcprime 12624 ↑𝑐ccxp 15525 σ csgm 15649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 ax-pre-suploc 8116 ax-addf 8117 ax-mulf 8118 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-disj 4059 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-of 6216 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-2o 6561 df-oadd 6564 df-er 6678 df-map 6795 df-pm 6796 df-en 6886 df-dom 6887 df-fin 6888 df-sup 7147 df-inf 7148 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-xnn0 9429 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-xneg 9964 df-xadd 9965 df-ioo 10084 df-ico 10086 df-icc 10087 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-fac 10943 df-bc 10965 df-ihash 10993 df-shft 11321 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 df-ef 12154 df-e 12155 df-dvds 12294 df-gcd 12470 df-prm 12625 df-pc 12803 df-rest 13269 df-topgen 13288 df-psmet 14501 df-xmet 14502 df-met 14503 df-bl 14504 df-mopn 14505 df-top 14666 df-topon 14679 df-bases 14711 df-ntr 14764 df-cn 14856 df-cnp 14857 df-tx 14921 df-cncf 15239 df-limced 15324 df-dvap 15325 df-relog 15526 df-rpcxp 15527 df-sgm 15650 |
| This theorem is referenced by: 1sgmprm 15662 1sgm2ppw 15663 |
| Copyright terms: Public domain | W3C validator |