| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zsqcl | GIF version | ||
| Description: Integers are closed under squaring. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| Ref | Expression |
|---|---|
| zsqcl | ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn0 9266 | . 2 ⊢ 2 ∈ ℕ0 | |
| 2 | zexpcl 10646 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝐴↑2) ∈ ℤ) | |
| 3 | 1, 2 | mpan2 425 | 1 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 (class class class)co 5922 2c2 9041 ℕ0cn0 9249 ℤcz 9326 ↑cexp 10630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 df-exp 10631 |
| This theorem is referenced by: zsqcl2 10709 zesq 10750 sqoddm1div8 10785 dvdssqim 12191 dvdssq 12198 isprm5lem 12309 sqrt2irrlem 12329 nn0gcdsq 12368 numdensq 12370 pythagtriplem2 12435 pythagtriplem3 12436 pythagtrip 12452 pockthg 12526 4sqlem8 12554 4sqlem10 12556 4sqlemafi 12564 4sqlemffi 12565 4sqleminfi 12566 4sqexercise1 12567 4sqexercise2 12568 4sqlem11 12570 4sqlem12 12571 4sqlem14 12573 4sqlem15 12574 4sqlem16 12575 lgsval 15245 lgscllem 15248 lgsdir 15276 lgsne0 15279 lgsmulsqcoprm 15287 lgsdinn0 15289 2lgsoddprmlem2 15347 2sqlem3 15358 2sqlem4 15359 2sqlem8 15364 |
| Copyright terms: Public domain | W3C validator |