ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsqcl GIF version

Theorem zsqcl 10721
Description: Integers are closed under squaring. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
zsqcl (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)

Proof of Theorem zsqcl
StepHypRef Expression
1 2nn0 9285 . 2 2 ∈ ℕ0
2 zexpcl 10665 . 2 ((𝐴 ∈ ℤ ∧ 2 ∈ ℕ0) → (𝐴↑2) ∈ ℤ)
31, 2mpan2 425 1 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  (class class class)co 5925  2c2 9060  0cn0 9268  cz 9345  cexp 10649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-n0 9269  df-z 9346  df-uz 9621  df-seqfrec 10559  df-exp 10650
This theorem is referenced by:  zsqcl2  10728  zesq  10769  sqoddm1div8  10804  dvdssqim  12218  dvdssq  12225  isprm5lem  12336  sqrt2irrlem  12356  nn0gcdsq  12395  numdensq  12397  pythagtriplem2  12462  pythagtriplem3  12463  pythagtrip  12479  pockthg  12553  4sqlem8  12581  4sqlem10  12583  4sqlemafi  12591  4sqlemffi  12592  4sqleminfi  12593  4sqexercise1  12594  4sqexercise2  12595  4sqlem11  12597  4sqlem12  12598  4sqlem14  12600  4sqlem15  12601  4sqlem16  12602  lgsval  15353  lgscllem  15356  lgsdir  15384  lgsne0  15387  lgsmulsqcoprm  15395  lgsdinn0  15397  2lgsoddprmlem2  15455  2sqlem3  15466  2sqlem4  15467  2sqlem8  15472
  Copyright terms: Public domain W3C validator