ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcm1 GIF version

Theorem lcm1 11608
Description: The lcm of an integer and 1 is the absolute value of the integer. (Contributed by AV, 23-Aug-2020.)
Assertion
Ref Expression
lcm1 (𝑀 ∈ ℤ → (𝑀 lcm 1) = (abs‘𝑀))

Proof of Theorem lcm1
StepHypRef Expression
1 gcd1 11523 . . . 4 (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1)
21oveq2d 5744 . . 3 (𝑀 ∈ ℤ → ((𝑀 lcm 1) · (𝑀 gcd 1)) = ((𝑀 lcm 1) · 1))
3 1z 8984 . . . . . 6 1 ∈ ℤ
4 lcmcl 11599 . . . . . 6 ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑀 lcm 1) ∈ ℕ0)
53, 4mpan2 419 . . . . 5 (𝑀 ∈ ℤ → (𝑀 lcm 1) ∈ ℕ0)
65nn0cnd 8936 . . . 4 (𝑀 ∈ ℤ → (𝑀 lcm 1) ∈ ℂ)
76mulid1d 7707 . . 3 (𝑀 ∈ ℤ → ((𝑀 lcm 1) · 1) = (𝑀 lcm 1))
82, 7eqtr2d 2148 . 2 (𝑀 ∈ ℤ → (𝑀 lcm 1) = ((𝑀 lcm 1) · (𝑀 gcd 1)))
9 lcmgcd 11605 . . 3 ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑀 lcm 1) · (𝑀 gcd 1)) = (abs‘(𝑀 · 1)))
103, 9mpan2 419 . 2 (𝑀 ∈ ℤ → ((𝑀 lcm 1) · (𝑀 gcd 1)) = (abs‘(𝑀 · 1)))
11 zcn 8963 . . . 4 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1211mulid1d 7707 . . 3 (𝑀 ∈ ℤ → (𝑀 · 1) = 𝑀)
1312fveq2d 5379 . 2 (𝑀 ∈ ℤ → (abs‘(𝑀 · 1)) = (abs‘𝑀))
148, 10, 133eqtrd 2151 1 (𝑀 ∈ ℤ → (𝑀 lcm 1) = (abs‘𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314  wcel 1463  cfv 5081  (class class class)co 5728  1c1 7548   · cmul 7552  0cn0 8881  cz 8958  abscabs 10661   gcd cgcd 11483   lcm clcm 11587
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664  ax-caucvg 7665
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-isom 5090  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-frec 6242  df-sup 6823  df-inf 6824  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-fz 9684  df-fzo 9813  df-fl 9936  df-mod 9989  df-seqfrec 10112  df-exp 10186  df-cj 10507  df-re 10508  df-im 10509  df-rsqrt 10662  df-abs 10663  df-dvds 11342  df-gcd 11484  df-lcm 11588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator