| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lcm1 | GIF version | ||
| Description: The lcm of an integer and 1 is the absolute value of the integer. (Contributed by AV, 23-Aug-2020.) |
| Ref | Expression |
|---|---|
| lcm1 | ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 1) = (abs‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcd1 12378 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1) | |
| 2 | 1 | oveq2d 5972 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 1) · (𝑀 gcd 1)) = ((𝑀 lcm 1) · 1)) |
| 3 | 1z 9413 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 4 | lcmcl 12464 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑀 lcm 1) ∈ ℕ0) | |
| 5 | 3, 4 | mpan2 425 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 1) ∈ ℕ0) |
| 6 | 5 | nn0cnd 9365 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 1) ∈ ℂ) |
| 7 | 6 | mulridd 8104 | . . 3 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 1) · 1) = (𝑀 lcm 1)) |
| 8 | 2, 7 | eqtr2d 2240 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 1) = ((𝑀 lcm 1) · (𝑀 gcd 1))) |
| 9 | lcmgcd 12470 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑀 lcm 1) · (𝑀 gcd 1)) = (abs‘(𝑀 · 1))) | |
| 10 | 3, 9 | mpan2 425 | . 2 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 1) · (𝑀 gcd 1)) = (abs‘(𝑀 · 1))) |
| 11 | zcn 9392 | . . . 4 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 12 | 11 | mulridd 8104 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑀 · 1) = 𝑀) |
| 13 | 12 | fveq2d 5592 | . 2 ⊢ (𝑀 ∈ ℤ → (abs‘(𝑀 · 1)) = (abs‘𝑀)) |
| 14 | 8, 10, 13 | 3eqtrd 2243 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 1) = (abs‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ‘cfv 5279 (class class class)co 5956 1c1 7941 · cmul 7945 ℕ0cn0 9310 ℤcz 9387 abscabs 11378 gcd cgcd 12344 lcm clcm 12452 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-caucvg 8060 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-isom 5288 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-recs 6403 df-frec 6489 df-sup 7100 df-inf 7101 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-n0 9311 df-z 9388 df-uz 9664 df-q 9756 df-rp 9791 df-fz 10146 df-fzo 10280 df-fl 10430 df-mod 10485 df-seqfrec 10610 df-exp 10701 df-cj 11223 df-re 11224 df-im 11225 df-rsqrt 11379 df-abs 11380 df-dvds 12169 df-gcd 12345 df-lcm 12453 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |