| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > qcn | GIF version | ||
| Description: A rational number is a complex number. (Contributed by NM, 2-Aug-2004.) | 
| Ref | Expression | 
|---|---|
| qcn | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qsscn 9705 | . 2 ⊢ ℚ ⊆ ℂ | |
| 2 | 1 | sseli 3179 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∈ wcel 2167 ℂcc 7877 ℚcq 9693 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-z 9327 df-q 9694 | 
| This theorem is referenced by: qsubcl 9712 qapne 9713 qdivcl 9717 qrevaddcl 9718 irradd 9720 irrmul 9721 irrmulap 9722 qavgle 10348 divfl0 10386 flqzadd 10388 intqfrac2 10411 flqdiv 10413 modqvalr 10417 flqpmodeq 10419 modq0 10421 mulqmod0 10422 negqmod0 10423 modqlt 10425 modqdiffl 10427 modqfrac 10429 flqmod 10430 intqfrac 10431 modqmulnn 10434 modqvalp1 10435 modqid 10441 modqcyc 10451 modqcyc2 10452 modqadd1 10453 modqaddabs 10454 modqmuladdnn0 10460 qnegmod 10461 modqadd2mod 10466 modqm1p1mod0 10467 modqmul1 10469 modqnegd 10471 modqadd12d 10472 modqsub12d 10473 q2txmodxeq0 10476 q2submod 10477 modqmulmodr 10482 modqaddmulmod 10483 modqdi 10484 modqsubdir 10485 modqeqmodmin 10486 qsqcl 10703 qsqeqor 10742 eirraplem 11942 bezoutlemnewy 12163 sqrt2irraplemnn 12347 pcqdiv 12476 pcexp 12478 pcadd 12509 pcadd2 12510 qexpz 12521 4sqlem5 12551 4sqlem10 12556 logbgcd1irraplemap 15205 ex-ceil 15372 qdencn 15671 apdifflemf 15690 apdifflemr 15691 apdiff 15692 | 
| Copyright terms: Public domain | W3C validator |