| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qcn | GIF version | ||
| Description: A rational number is a complex number. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| qcn | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsscn 9734 | . 2 ⊢ ℚ ⊆ ℂ | |
| 2 | 1 | sseli 3188 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 ℂcc 7905 ℚcq 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-z 9355 df-q 9723 |
| This theorem is referenced by: qsubcl 9741 qapne 9742 qdivcl 9746 qrevaddcl 9747 irradd 9749 irrmul 9750 irrmulap 9751 qavgle 10382 divfl0 10420 flqzadd 10422 intqfrac2 10445 flqdiv 10447 modqvalr 10451 flqpmodeq 10453 modq0 10455 mulqmod0 10456 negqmod0 10457 modqlt 10459 modqdiffl 10461 modqfrac 10463 flqmod 10464 intqfrac 10465 modqmulnn 10468 modqvalp1 10469 modqid 10475 modqcyc 10485 modqcyc2 10486 modqadd1 10487 modqaddabs 10488 modqmuladdnn0 10494 qnegmod 10495 modqadd2mod 10500 modqm1p1mod0 10501 modqmul1 10503 modqnegd 10505 modqadd12d 10506 modqsub12d 10507 q2txmodxeq0 10510 q2submod 10511 modqmulmodr 10516 modqaddmulmod 10517 modqdi 10518 modqsubdir 10519 modqeqmodmin 10520 qsqcl 10737 qsqeqor 10776 eirraplem 12007 bezoutlemnewy 12236 sqrt2irraplemnn 12420 pcqdiv 12549 pcexp 12551 pcadd 12582 pcadd2 12583 qexpz 12594 4sqlem5 12624 4sqlem10 12629 logbgcd1irraplemap 15359 ex-ceil 15526 qdencn 15830 apdifflemf 15849 apdifflemr 15850 apdiff 15851 |
| Copyright terms: Public domain | W3C validator |