![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qcn | GIF version |
Description: A rational number is a complex number. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
qcn | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsscn 9273 | . 2 ⊢ ℚ ⊆ ℂ | |
2 | 1 | sseli 3043 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1448 ℂcc 7498 ℚcq 9261 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 ax-pre-mulext 7613 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rmo 2383 df-rab 2384 df-v 2643 df-sbc 2863 df-csb 2956 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-iun 3762 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-po 4156 df-iso 4157 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-ima 4490 df-iota 5024 df-fun 5061 df-fn 5062 df-f 5063 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-1st 5969 df-2nd 5970 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-div 8294 df-inn 8579 df-z 8907 df-q 9262 |
This theorem is referenced by: qsubcl 9280 qapne 9281 qdivcl 9285 qrevaddcl 9286 irradd 9288 irrmul 9289 qavgle 9877 divfl0 9910 flqzadd 9912 intqfrac2 9933 flqdiv 9935 modqvalr 9939 flqpmodeq 9941 modq0 9943 mulqmod0 9944 negqmod0 9945 modqlt 9947 modqdiffl 9949 modqfrac 9951 flqmod 9952 intqfrac 9953 modqmulnn 9956 modqvalp1 9957 modqid 9963 modqcyc 9973 modqcyc2 9974 modqadd1 9975 modqaddabs 9976 modqmuladdnn0 9982 qnegmod 9983 modqadd2mod 9988 modqm1p1mod0 9989 modqmul1 9991 modqnegd 9993 modqadd12d 9994 modqsub12d 9995 q2txmodxeq0 9998 q2submod 9999 modqmulmodr 10004 modqaddmulmod 10005 modqdi 10006 modqsubdir 10007 modqeqmodmin 10008 qsqcl 10205 eirraplem 11278 bezoutlemnewy 11477 sqrt2irraplemnn 11649 ex-ceil 12541 qdencn 12806 |
Copyright terms: Public domain | W3C validator |