![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qcn | GIF version |
Description: A rational number is a complex number. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
qcn | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsscn 9696 | . 2 ⊢ ℚ ⊆ ℂ | |
2 | 1 | sseli 3175 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℂcc 7870 ℚcq 9684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-z 9318 df-q 9685 |
This theorem is referenced by: qsubcl 9703 qapne 9704 qdivcl 9708 qrevaddcl 9709 irradd 9711 irrmul 9712 irrmulap 9713 qavgle 10327 divfl0 10365 flqzadd 10367 intqfrac2 10390 flqdiv 10392 modqvalr 10396 flqpmodeq 10398 modq0 10400 mulqmod0 10401 negqmod0 10402 modqlt 10404 modqdiffl 10406 modqfrac 10408 flqmod 10409 intqfrac 10410 modqmulnn 10413 modqvalp1 10414 modqid 10420 modqcyc 10430 modqcyc2 10431 modqadd1 10432 modqaddabs 10433 modqmuladdnn0 10439 qnegmod 10440 modqadd2mod 10445 modqm1p1mod0 10446 modqmul1 10448 modqnegd 10450 modqadd12d 10451 modqsub12d 10452 q2txmodxeq0 10455 q2submod 10456 modqmulmodr 10461 modqaddmulmod 10462 modqdi 10463 modqsubdir 10464 modqeqmodmin 10465 qsqcl 10682 qsqeqor 10721 eirraplem 11920 bezoutlemnewy 12133 sqrt2irraplemnn 12317 pcqdiv 12445 pcexp 12447 pcadd 12478 pcadd2 12479 qexpz 12490 4sqlem5 12520 4sqlem10 12525 logbgcd1irraplemap 15101 ex-ceil 15218 qdencn 15517 apdifflemf 15536 apdifflemr 15537 apdiff 15538 |
Copyright terms: Public domain | W3C validator |