| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qcn | GIF version | ||
| Description: A rational number is a complex number. (Contributed by NM, 2-Aug-2004.) |
| Ref | Expression |
|---|---|
| qcn | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsscn 9772 | . 2 ⊢ ℚ ⊆ ℂ | |
| 2 | 1 | sseli 3193 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ℂcc 7943 ℚcq 9760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-po 4351 df-iso 4352 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-z 9393 df-q 9761 |
| This theorem is referenced by: qsubcl 9779 qapne 9780 qdivcl 9784 qrevaddcl 9785 irradd 9787 irrmul 9788 irrmulap 9789 qavgle 10423 divfl0 10461 flqzadd 10463 intqfrac2 10486 flqdiv 10488 modqvalr 10492 flqpmodeq 10494 modq0 10496 mulqmod0 10497 negqmod0 10498 modqlt 10500 modqdiffl 10502 modqfrac 10504 flqmod 10505 intqfrac 10506 modqmulnn 10509 modqvalp1 10510 modqid 10516 modqcyc 10526 modqcyc2 10527 modqadd1 10528 modqaddabs 10529 modqmuladdnn0 10535 qnegmod 10536 modqadd2mod 10541 modqm1p1mod0 10542 modqmul1 10544 modqnegd 10546 modqadd12d 10547 modqsub12d 10548 q2txmodxeq0 10551 q2submod 10552 modqmulmodr 10557 modqaddmulmod 10558 modqdi 10559 modqsubdir 10560 modqeqmodmin 10561 qsqcl 10778 qsqeqor 10817 eirraplem 12163 bezoutlemnewy 12392 sqrt2irraplemnn 12576 pcqdiv 12705 pcexp 12707 pcadd 12738 pcadd2 12739 qexpz 12750 4sqlem5 12780 4sqlem10 12785 logbgcd1irraplemap 15516 ex-ceil 15801 qdencn 16107 apdifflemf 16126 apdifflemr 16127 apdiff 16128 |
| Copyright terms: Public domain | W3C validator |