Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qcn | GIF version |
Description: A rational number is a complex number. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
qcn | ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qsscn 9569 | . 2 ⊢ ℚ ⊆ ℂ | |
2 | 1 | sseli 3138 | 1 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 ℂcc 7751 ℚcq 9557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-z 9192 df-q 9558 |
This theorem is referenced by: qsubcl 9576 qapne 9577 qdivcl 9581 qrevaddcl 9582 irradd 9584 irrmul 9585 qavgle 10194 divfl0 10231 flqzadd 10233 intqfrac2 10254 flqdiv 10256 modqvalr 10260 flqpmodeq 10262 modq0 10264 mulqmod0 10265 negqmod0 10266 modqlt 10268 modqdiffl 10270 modqfrac 10272 flqmod 10273 intqfrac 10274 modqmulnn 10277 modqvalp1 10278 modqid 10284 modqcyc 10294 modqcyc2 10295 modqadd1 10296 modqaddabs 10297 modqmuladdnn0 10303 qnegmod 10304 modqadd2mod 10309 modqm1p1mod0 10310 modqmul1 10312 modqnegd 10314 modqadd12d 10315 modqsub12d 10316 q2txmodxeq0 10319 q2submod 10320 modqmulmodr 10325 modqaddmulmod 10326 modqdi 10327 modqsubdir 10328 modqeqmodmin 10329 qsqcl 10526 qsqeqor 10565 eirraplem 11717 bezoutlemnewy 11929 sqrt2irraplemnn 12111 pcqdiv 12239 pcexp 12241 pcadd 12271 qexpz 12282 4sqlem5 12312 4sqlem10 12317 logbgcd1irraplemap 13527 ex-ceil 13607 qdencn 13906 apdifflemf 13925 apdifflemr 13926 apdiff 13927 |
Copyright terms: Public domain | W3C validator |