ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuz2 GIF version

Theorem prmuz2 12125
Description: A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
prmuz2 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))

Proof of Theorem prmuz2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isprm4 12113 . 2 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ (ℤ‘2)(𝑥𝑃𝑥 = 𝑃)))
21simplbi 274 1 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  wral 2455   class class class wbr 4003  cfv 5216  2c2 8968  cuz 9526  cdvds 11789  cprime 12101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928  ax-arch 7929  ax-caucvg 7930
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-1o 6416  df-2o 6417  df-er 6534  df-en 6740  df-pnf 7992  df-mnf 7993  df-xr 7994  df-ltxr 7995  df-le 7996  df-sub 8128  df-neg 8129  df-reap 8530  df-ap 8537  df-div 8628  df-inn 8918  df-2 8976  df-3 8977  df-4 8978  df-n0 9175  df-z 9252  df-uz 9527  df-q 9618  df-rp 9652  df-seqfrec 10443  df-exp 10517  df-cj 10846  df-re 10847  df-im 10848  df-rsqrt 11002  df-abs 11003  df-dvds 11790  df-prm 12102
This theorem is referenced by:  prmgt1  12126  prmm2nn0  12127  oddprmgt2  12128  sqnprm  12130  isprm5  12136  prmrp  12139  isprm6  12141  prmdvdsexpb  12143  prmdiv  12229  prmdiveq  12230  modprm1div  12241  oddprm  12253  pcpremul  12287  pceulem  12288  pceu  12289  pczpre  12291  pczcl  12292  pc1  12299  pczdvds  12307  pczndvds  12309  pczndvds2  12311  pcidlem  12316  pcfaclem  12341  pcfac  12342  pockthlem  12348  pockthg  12349  prmunb  12354  logbprmirr  14321  lgslem1  14332  lgsval2lem  14342  lgsdirprm  14366  lgsne0  14370
  Copyright terms: Public domain W3C validator