Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzprename Structured version   Visualization version   GIF version

Theorem mzprename 42737
Description: Simplified version of mzpsubst 42736 to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzprename ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) ∈ (mzPoly‘𝑊))
Distinct variable groups:   𝑥,𝑊   𝑥,𝐹   𝑥,𝑅   𝑥,𝑉

Proof of Theorem mzprename
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
2 zex 12538 . . . . . . . . 9 ℤ ∈ V
3 simpll 766 . . . . . . . . 9 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑊 ∈ V)
4 elmapg 8812 . . . . . . . . 9 ((ℤ ∈ V ∧ 𝑊 ∈ V) → (𝑥 ∈ (ℤ ↑m 𝑊) ↔ 𝑥:𝑊⟶ℤ))
52, 3, 4sylancr 587 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↔ 𝑥:𝑊⟶ℤ))
61, 5mpbid 232 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥:𝑊⟶ℤ)
7 simplr 768 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑅:𝑉𝑊)
8 fcompt 7105 . . . . . . 7 ((𝑥:𝑊⟶ℤ ∧ 𝑅:𝑉𝑊) → (𝑥𝑅) = (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))))
96, 7, 8syl2anc 584 . . . . . 6 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥𝑅) = (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))))
10 fveq1 6857 . . . . . . . . . 10 (𝑏 = 𝑥 → (𝑏‘(𝑅𝑎)) = (𝑥‘(𝑅𝑎)))
11 eqid 2729 . . . . . . . . . 10 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) = (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))
12 fvex 6871 . . . . . . . . . 10 (𝑥‘(𝑅𝑎)) ∈ V
1310, 11, 12fvmpt 6968 . . . . . . . . 9 (𝑥 ∈ (ℤ ↑m 𝑊) → ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥) = (𝑥‘(𝑅𝑎)))
1413ad2antlr 727 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) ∧ 𝑎𝑉) → ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥) = (𝑥‘(𝑅𝑎)))
1514eqcomd 2735 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) ∧ 𝑎𝑉) → (𝑥‘(𝑅𝑎)) = ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥))
1615mpteq2dva 5200 . . . . . 6 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))) = (𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))
179, 16eqtrd 2764 . . . . 5 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥𝑅) = (𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))
1817fveq2d 6862 . . . 4 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝐹‘(𝑥𝑅)) = (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥))))
1918mpteq2dva 5200 . . 3 ((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))))
20193adant2 1131 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))))
21 simpl1 1192 . . . . 5 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → 𝑊 ∈ V)
22 ffvelcdm 7053 . . . . . 6 ((𝑅:𝑉𝑊𝑎𝑉) → (𝑅𝑎) ∈ 𝑊)
23223ad2antl3 1188 . . . . 5 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → (𝑅𝑎) ∈ 𝑊)
24 mzpproj 42725 . . . . 5 ((𝑊 ∈ V ∧ (𝑅𝑎) ∈ 𝑊) → (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
2521, 23, 24syl2anc 584 . . . 4 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
2625ralrimiva 3125 . . 3 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → ∀𝑎𝑉 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
27 mzpsubst 42736 . . 3 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑎𝑉 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))) ∈ (mzPoly‘𝑊))
2826, 27syld3an3 1411 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))) ∈ (mzPoly‘𝑊))
2920, 28eqeltrd 2828 1 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) ∈ (mzPoly‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cmpt 5188  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cz 12529  mzPolycmzp 42710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-mzpcl 42711  df-mzp 42712
This theorem is referenced by:  mzpresrename  42738  eldioph2  42750  eldioph2b  42751  diophren  42801
  Copyright terms: Public domain W3C validator