Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzprename Structured version   Visualization version   GIF version

Theorem mzprename 41790
Description: Simplified version of mzpsubst 41789 to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzprename ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) ∈ (mzPoly‘𝑊))
Distinct variable groups:   𝑥,𝑊   𝑥,𝐹   𝑥,𝑅   𝑥,𝑉

Proof of Theorem mzprename
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
2 zex 12572 . . . . . . . . 9 ℤ ∈ V
3 simpll 764 . . . . . . . . 9 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑊 ∈ V)
4 elmapg 8837 . . . . . . . . 9 ((ℤ ∈ V ∧ 𝑊 ∈ V) → (𝑥 ∈ (ℤ ↑m 𝑊) ↔ 𝑥:𝑊⟶ℤ))
52, 3, 4sylancr 586 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↔ 𝑥:𝑊⟶ℤ))
61, 5mpbid 231 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥:𝑊⟶ℤ)
7 simplr 766 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑅:𝑉𝑊)
8 fcompt 7133 . . . . . . 7 ((𝑥:𝑊⟶ℤ ∧ 𝑅:𝑉𝑊) → (𝑥𝑅) = (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))))
96, 7, 8syl2anc 583 . . . . . 6 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥𝑅) = (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))))
10 fveq1 6890 . . . . . . . . . 10 (𝑏 = 𝑥 → (𝑏‘(𝑅𝑎)) = (𝑥‘(𝑅𝑎)))
11 eqid 2731 . . . . . . . . . 10 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) = (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))
12 fvex 6904 . . . . . . . . . 10 (𝑥‘(𝑅𝑎)) ∈ V
1310, 11, 12fvmpt 6998 . . . . . . . . 9 (𝑥 ∈ (ℤ ↑m 𝑊) → ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥) = (𝑥‘(𝑅𝑎)))
1413ad2antlr 724 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) ∧ 𝑎𝑉) → ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥) = (𝑥‘(𝑅𝑎)))
1514eqcomd 2737 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) ∧ 𝑎𝑉) → (𝑥‘(𝑅𝑎)) = ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥))
1615mpteq2dva 5248 . . . . . 6 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))) = (𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))
179, 16eqtrd 2771 . . . . 5 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥𝑅) = (𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))
1817fveq2d 6895 . . . 4 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝐹‘(𝑥𝑅)) = (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥))))
1918mpteq2dva 5248 . . 3 ((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))))
20193adant2 1130 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))))
21 simpl1 1190 . . . . 5 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → 𝑊 ∈ V)
22 ffvelcdm 7083 . . . . . 6 ((𝑅:𝑉𝑊𝑎𝑉) → (𝑅𝑎) ∈ 𝑊)
23223ad2antl3 1186 . . . . 5 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → (𝑅𝑎) ∈ 𝑊)
24 mzpproj 41778 . . . . 5 ((𝑊 ∈ V ∧ (𝑅𝑎) ∈ 𝑊) → (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
2521, 23, 24syl2anc 583 . . . 4 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
2625ralrimiva 3145 . . 3 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → ∀𝑎𝑉 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
27 mzpsubst 41789 . . 3 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑎𝑉 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))) ∈ (mzPoly‘𝑊))
2826, 27syld3an3 1408 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))) ∈ (mzPoly‘𝑊))
2920, 28eqeltrd 2832 1 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) ∈ (mzPoly‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wral 3060  Vcvv 3473  cmpt 5231  ccom 5680  wf 6539  cfv 6543  (class class class)co 7412  m cmap 8824  cz 12563  mzPolycmzp 41763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-map 8826  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-mzpcl 41764  df-mzp 41765
This theorem is referenced by:  mzpresrename  41791  eldioph2  41803  eldioph2b  41804  diophren  41854
  Copyright terms: Public domain W3C validator