Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzprename Structured version   Visualization version   GIF version

Theorem mzprename 39224
Description: Simplified version of mzpsubst 39223 to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzprename ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) ∈ (mzPoly‘𝑊))
Distinct variable groups:   𝑥,𝑊   𝑥,𝐹   𝑥,𝑅   𝑥,𝑉

Proof of Theorem mzprename
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
2 zex 11978 . . . . . . . . 9 ℤ ∈ V
3 simpll 763 . . . . . . . . 9 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑊 ∈ V)
4 elmapg 8408 . . . . . . . . 9 ((ℤ ∈ V ∧ 𝑊 ∈ V) → (𝑥 ∈ (ℤ ↑m 𝑊) ↔ 𝑥:𝑊⟶ℤ))
52, 3, 4sylancr 587 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↔ 𝑥:𝑊⟶ℤ))
61, 5mpbid 233 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥:𝑊⟶ℤ)
7 simplr 765 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑅:𝑉𝑊)
8 fcompt 6887 . . . . . . 7 ((𝑥:𝑊⟶ℤ ∧ 𝑅:𝑉𝑊) → (𝑥𝑅) = (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))))
96, 7, 8syl2anc 584 . . . . . 6 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥𝑅) = (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))))
10 fveq1 6662 . . . . . . . . . 10 (𝑏 = 𝑥 → (𝑏‘(𝑅𝑎)) = (𝑥‘(𝑅𝑎)))
11 eqid 2818 . . . . . . . . . 10 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) = (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))
12 fvex 6676 . . . . . . . . . 10 (𝑥‘(𝑅𝑎)) ∈ V
1310, 11, 12fvmpt 6761 . . . . . . . . 9 (𝑥 ∈ (ℤ ↑m 𝑊) → ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥) = (𝑥‘(𝑅𝑎)))
1413ad2antlr 723 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) ∧ 𝑎𝑉) → ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥) = (𝑥‘(𝑅𝑎)))
1514eqcomd 2824 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) ∧ 𝑎𝑉) → (𝑥‘(𝑅𝑎)) = ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥))
1615mpteq2dva 5152 . . . . . 6 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))) = (𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))
179, 16eqtrd 2853 . . . . 5 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥𝑅) = (𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))
1817fveq2d 6667 . . . 4 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝐹‘(𝑥𝑅)) = (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥))))
1918mpteq2dva 5152 . . 3 ((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))))
20193adant2 1123 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))))
21 simpl1 1183 . . . . 5 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → 𝑊 ∈ V)
22 ffvelrn 6841 . . . . . 6 ((𝑅:𝑉𝑊𝑎𝑉) → (𝑅𝑎) ∈ 𝑊)
23223ad2antl3 1179 . . . . 5 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → (𝑅𝑎) ∈ 𝑊)
24 mzpproj 39212 . . . . 5 ((𝑊 ∈ V ∧ (𝑅𝑎) ∈ 𝑊) → (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
2521, 23, 24syl2anc 584 . . . 4 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
2625ralrimiva 3179 . . 3 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → ∀𝑎𝑉 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
27 mzpsubst 39223 . . 3 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑎𝑉 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))) ∈ (mzPoly‘𝑊))
2826, 27syld3an3 1401 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))) ∈ (mzPoly‘𝑊))
2920, 28eqeltrd 2910 1 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) ∈ (mzPoly‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492  cmpt 5137  ccom 5552  wf 6344  cfv 6348  (class class class)co 7145  m cmap 8395  cz 11969  mzPolycmzp 39197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-n0 11886  df-z 11970  df-mzpcl 39198  df-mzp 39199
This theorem is referenced by:  mzpresrename  39225  eldioph2  39237  eldioph2b  39238  diophren  39288
  Copyright terms: Public domain W3C validator