Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzprename Structured version   Visualization version   GIF version

Theorem mzprename 40487
Description: Simplified version of mzpsubst 40486 to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzprename ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) ∈ (mzPoly‘𝑊))
Distinct variable groups:   𝑥,𝑊   𝑥,𝐹   𝑥,𝑅   𝑥,𝑉

Proof of Theorem mzprename
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
2 zex 12258 . . . . . . . . 9 ℤ ∈ V
3 simpll 763 . . . . . . . . 9 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑊 ∈ V)
4 elmapg 8586 . . . . . . . . 9 ((ℤ ∈ V ∧ 𝑊 ∈ V) → (𝑥 ∈ (ℤ ↑m 𝑊) ↔ 𝑥:𝑊⟶ℤ))
52, 3, 4sylancr 586 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↔ 𝑥:𝑊⟶ℤ))
61, 5mpbid 231 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥:𝑊⟶ℤ)
7 simplr 765 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑅:𝑉𝑊)
8 fcompt 6987 . . . . . . 7 ((𝑥:𝑊⟶ℤ ∧ 𝑅:𝑉𝑊) → (𝑥𝑅) = (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))))
96, 7, 8syl2anc 583 . . . . . 6 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥𝑅) = (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))))
10 fveq1 6755 . . . . . . . . . 10 (𝑏 = 𝑥 → (𝑏‘(𝑅𝑎)) = (𝑥‘(𝑅𝑎)))
11 eqid 2738 . . . . . . . . . 10 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) = (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))
12 fvex 6769 . . . . . . . . . 10 (𝑥‘(𝑅𝑎)) ∈ V
1310, 11, 12fvmpt 6857 . . . . . . . . 9 (𝑥 ∈ (ℤ ↑m 𝑊) → ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥) = (𝑥‘(𝑅𝑎)))
1413ad2antlr 723 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) ∧ 𝑎𝑉) → ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥) = (𝑥‘(𝑅𝑎)))
1514eqcomd 2744 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) ∧ 𝑎𝑉) → (𝑥‘(𝑅𝑎)) = ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥))
1615mpteq2dva 5170 . . . . . 6 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))) = (𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))
179, 16eqtrd 2778 . . . . 5 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥𝑅) = (𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))
1817fveq2d 6760 . . . 4 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝐹‘(𝑥𝑅)) = (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥))))
1918mpteq2dva 5170 . . 3 ((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))))
20193adant2 1129 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))))
21 simpl1 1189 . . . . 5 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → 𝑊 ∈ V)
22 ffvelrn 6941 . . . . . 6 ((𝑅:𝑉𝑊𝑎𝑉) → (𝑅𝑎) ∈ 𝑊)
23223ad2antl3 1185 . . . . 5 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → (𝑅𝑎) ∈ 𝑊)
24 mzpproj 40475 . . . . 5 ((𝑊 ∈ V ∧ (𝑅𝑎) ∈ 𝑊) → (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
2521, 23, 24syl2anc 583 . . . 4 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
2625ralrimiva 3107 . . 3 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → ∀𝑎𝑉 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
27 mzpsubst 40486 . . 3 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑎𝑉 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))) ∈ (mzPoly‘𝑊))
2826, 27syld3an3 1407 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))) ∈ (mzPoly‘𝑊))
2920, 28eqeltrd 2839 1 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) ∈ (mzPoly‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cmpt 5153  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  cz 12249  mzPolycmzp 40460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-mzpcl 40461  df-mzp 40462
This theorem is referenced by:  mzpresrename  40488  eldioph2  40500  eldioph2b  40501  diophren  40551
  Copyright terms: Public domain W3C validator