Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzprename Structured version   Visualization version   GIF version

Theorem mzprename 41130
Description: Simplified version of mzpsubst 41129 to simply relabel variables in a polynomial. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzprename ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) ∈ (mzPoly‘𝑊))
Distinct variable groups:   𝑥,𝑊   𝑥,𝐹   𝑥,𝑅   𝑥,𝑉

Proof of Theorem mzprename
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥 ∈ (ℤ ↑m 𝑊))
2 zex 12517 . . . . . . . . 9 ℤ ∈ V
3 simpll 765 . . . . . . . . 9 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑊 ∈ V)
4 elmapg 8785 . . . . . . . . 9 ((ℤ ∈ V ∧ 𝑊 ∈ V) → (𝑥 ∈ (ℤ ↑m 𝑊) ↔ 𝑥:𝑊⟶ℤ))
52, 3, 4sylancr 587 . . . . . . . 8 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↔ 𝑥:𝑊⟶ℤ))
61, 5mpbid 231 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑥:𝑊⟶ℤ)
7 simplr 767 . . . . . . 7 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → 𝑅:𝑉𝑊)
8 fcompt 7084 . . . . . . 7 ((𝑥:𝑊⟶ℤ ∧ 𝑅:𝑉𝑊) → (𝑥𝑅) = (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))))
96, 7, 8syl2anc 584 . . . . . 6 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥𝑅) = (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))))
10 fveq1 6846 . . . . . . . . . 10 (𝑏 = 𝑥 → (𝑏‘(𝑅𝑎)) = (𝑥‘(𝑅𝑎)))
11 eqid 2731 . . . . . . . . . 10 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) = (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))
12 fvex 6860 . . . . . . . . . 10 (𝑥‘(𝑅𝑎)) ∈ V
1310, 11, 12fvmpt 6953 . . . . . . . . 9 (𝑥 ∈ (ℤ ↑m 𝑊) → ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥) = (𝑥‘(𝑅𝑎)))
1413ad2antlr 725 . . . . . . . 8 ((((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) ∧ 𝑎𝑉) → ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥) = (𝑥‘(𝑅𝑎)))
1514eqcomd 2737 . . . . . . 7 ((((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) ∧ 𝑎𝑉) → (𝑥‘(𝑅𝑎)) = ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥))
1615mpteq2dva 5210 . . . . . 6 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑎𝑉 ↦ (𝑥‘(𝑅𝑎))) = (𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))
179, 16eqtrd 2771 . . . . 5 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝑥𝑅) = (𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))
1817fveq2d 6851 . . . 4 (((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) ∧ 𝑥 ∈ (ℤ ↑m 𝑊)) → (𝐹‘(𝑥𝑅)) = (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥))))
1918mpteq2dva 5210 . . 3 ((𝑊 ∈ V ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))))
20193adant2 1131 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) = (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))))
21 simpl1 1191 . . . . 5 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → 𝑊 ∈ V)
22 ffvelcdm 7037 . . . . . 6 ((𝑅:𝑉𝑊𝑎𝑉) → (𝑅𝑎) ∈ 𝑊)
23223ad2antl3 1187 . . . . 5 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → (𝑅𝑎) ∈ 𝑊)
24 mzpproj 41118 . . . . 5 ((𝑊 ∈ V ∧ (𝑅𝑎) ∈ 𝑊) → (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
2521, 23, 24syl2anc 584 . . . 4 (((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) ∧ 𝑎𝑉) → (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
2625ralrimiva 3139 . . 3 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → ∀𝑎𝑉 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊))
27 mzpsubst 41129 . . 3 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ ∀𝑎𝑉 (𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎))) ∈ (mzPoly‘𝑊)) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))) ∈ (mzPoly‘𝑊))
2826, 27syld3an3 1409 . 2 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑎𝑉 ↦ ((𝑏 ∈ (ℤ ↑m 𝑊) ↦ (𝑏‘(𝑅𝑎)))‘𝑥)))) ∈ (mzPoly‘𝑊))
2920, 28eqeltrd 2832 1 ((𝑊 ∈ V ∧ 𝐹 ∈ (mzPoly‘𝑉) ∧ 𝑅:𝑉𝑊) → (𝑥 ∈ (ℤ ↑m 𝑊) ↦ (𝐹‘(𝑥𝑅))) ∈ (mzPoly‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3060  Vcvv 3446  cmpt 5193  ccom 5642  wf 6497  cfv 6501  (class class class)co 7362  m cmap 8772  cz 12508  mzPolycmzp 41103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-nn 12163  df-n0 12423  df-z 12509  df-mzpcl 41104  df-mzp 41105
This theorem is referenced by:  mzpresrename  41131  eldioph2  41143  eldioph2b  41144  diophren  41194
  Copyright terms: Public domain W3C validator