Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qndenserrnopnlem | Structured version Visualization version GIF version |
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
qndenserrnopnlem.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
qndenserrnopnlem.j | ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) |
qndenserrnopnlem.v | ⊢ (𝜑 → 𝑉 ∈ 𝐽) |
qndenserrnopnlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
qndenserrnopnlem.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
Ref | Expression |
---|---|
qndenserrnopnlem | ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qndenserrnopnlem.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
2 | qndenserrnopnlem.d | . . . . . 6 ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) | |
3 | 2 | rrxmetfi 24481 | . . . . 5 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
5 | metxmet 23395 | . . . 4 ⊢ (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼))) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼))) |
7 | qndenserrnopnlem.v | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ 𝐽) | |
8 | qndenserrnopnlem.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) | |
9 | 7, 8 | eleqtrdi 2849 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ (TopOpen‘(ℝ^‘𝐼))) |
10 | 1 | rrxtopnfi 43718 | . . . . 5 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))))) |
11 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (dist‘(ℝ^‘𝐼))) |
12 | eqid 2738 | . . . . . . . . 9 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
13 | eqid 2738 | . . . . . . . . 9 ⊢ (ℝ ↑m 𝐼) = (ℝ ↑m 𝐼) | |
14 | 12, 13 | rrxdsfi 24480 | . . . . . . . 8 ⊢ (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
15 | 1, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
16 | 11, 15 | eqtr2d 2779 | . . . . . 6 ⊢ (𝜑 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) = 𝐷) |
17 | 16 | fveq2d 6760 | . . . . 5 ⊢ (𝜑 → (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) = (MetOpen‘𝐷)) |
18 | 10, 17 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘𝐷)) |
19 | 9, 18 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑉 ∈ (MetOpen‘𝐷)) |
20 | qndenserrnopnlem.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
21 | eqid 2738 | . . . 4 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
22 | 21 | mopni2 23555 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ 𝑉 ∈ (MetOpen‘𝐷) ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) |
23 | 6, 19, 20, 22 | syl3anc 1369 | . 2 ⊢ (𝜑 → ∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) |
24 | 1 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝐼 ∈ Fin) |
25 | rrxtps 43717 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ Fin → (ℝ^‘𝐼) ∈ TopSp) | |
26 | 1, 25 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (ℝ^‘𝐼) ∈ TopSp) |
27 | eqid 2738 | . . . . . . . . . . . 12 ⊢ (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) | |
28 | 27, 8 | istps 21991 | . . . . . . . . . . 11 ⊢ ((ℝ^‘𝐼) ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼)))) |
29 | 26, 28 | sylib 217 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼)))) |
30 | 1, 12, 27 | rrxbasefi 24479 | . . . . . . . . . . 11 ⊢ (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼)) |
31 | 30 | fveq2d 6760 | . . . . . . . . . 10 ⊢ (𝜑 → (TopOn‘(Base‘(ℝ^‘𝐼))) = (TopOn‘(ℝ ↑m 𝐼))) |
32 | 29, 31 | eleqtrd 2841 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(ℝ ↑m 𝐼))) |
33 | toponss 21984 | . . . . . . . . 9 ⊢ ((𝐽 ∈ (TopOn‘(ℝ ↑m 𝐼)) ∧ 𝑉 ∈ 𝐽) → 𝑉 ⊆ (ℝ ↑m 𝐼)) | |
34 | 32, 7, 33 | syl2anc 583 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ⊆ (ℝ ↑m 𝐼)) |
35 | 34, 20 | sseldd 3918 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (ℝ ↑m 𝐼)) |
36 | 35 | 3ad2ant1 1131 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝑋 ∈ (ℝ ↑m 𝐼)) |
37 | simp2 1135 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝑒 ∈ ℝ+) | |
38 | 24, 36, 2, 37 | qndenserrnbl 43726 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝑒)) |
39 | ssel 3910 | . . . . . . . 8 ⊢ ((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦 ∈ 𝑉)) | |
40 | 39 | adantr 480 | . . . . . . 7 ⊢ (((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 ∧ 𝑦 ∈ (ℚ ↑m 𝐼)) → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦 ∈ 𝑉)) |
41 | 40 | 3ad2antl3 1185 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) ∧ 𝑦 ∈ (ℚ ↑m 𝐼)) → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦 ∈ 𝑉)) |
42 | 41 | reximdva 3202 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉)) |
43 | 38, 42 | mpd 15 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) |
44 | 43 | 3exp 1117 | . . 3 ⊢ (𝜑 → (𝑒 ∈ ℝ+ → ((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉))) |
45 | 44 | rexlimdv 3211 | . 2 ⊢ (𝜑 → (∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉)) |
46 | 23, 45 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ↑m cmap 8573 Fincfn 8691 ℝcr 10801 − cmin 11135 2c2 11958 ℚcq 12617 ℝ+crp 12659 ↑cexp 13710 √csqrt 14872 Σcsu 15325 Basecbs 16840 distcds 16897 TopOpenctopn 17049 ∞Metcxmet 20495 Metcmet 20496 ballcbl 20497 MetOpencmopn 20500 TopOnctopon 21967 TopSpctps 21989 ℝ^crrx 24452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ico 13014 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-prds 17075 df-pws 17077 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-rnghom 19874 df-drng 19908 df-field 19909 df-subrg 19937 df-abv 19992 df-staf 20020 df-srng 20021 df-lmod 20040 df-lss 20109 df-lmhm 20199 df-lvec 20280 df-sra 20349 df-rgmod 20350 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-refld 20722 df-phl 20743 df-dsmm 20849 df-frlm 20864 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-xms 23381 df-ms 23382 df-nm 23644 df-ngp 23645 df-tng 23646 df-nrg 23647 df-nlm 23648 df-clm 24132 df-cph 24237 df-tcph 24238 df-rrx 24454 |
This theorem is referenced by: qndenserrnopn 43729 |
Copyright terms: Public domain | W3C validator |