![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qndenserrnopnlem | Structured version Visualization version GIF version |
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
qndenserrnopnlem.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
qndenserrnopnlem.j | ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) |
qndenserrnopnlem.v | ⊢ (𝜑 → 𝑉 ∈ 𝐽) |
qndenserrnopnlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
qndenserrnopnlem.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
Ref | Expression |
---|---|
qndenserrnopnlem | ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qndenserrnopnlem.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
2 | qndenserrnopnlem.d | . . . . . 6 ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) | |
3 | 2 | rrxmetfi 24776 | . . . . 5 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
5 | metxmet 23687 | . . . 4 ⊢ (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼))) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼))) |
7 | qndenserrnopnlem.v | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ 𝐽) | |
8 | qndenserrnopnlem.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) | |
9 | 7, 8 | eleqtrdi 2848 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ (TopOpen‘(ℝ^‘𝐼))) |
10 | 1 | rrxtopnfi 44518 | . . . . 5 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))))) |
11 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (dist‘(ℝ^‘𝐼))) |
12 | eqid 2736 | . . . . . . . . 9 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
13 | eqid 2736 | . . . . . . . . 9 ⊢ (ℝ ↑m 𝐼) = (ℝ ↑m 𝐼) | |
14 | 12, 13 | rrxdsfi 24775 | . . . . . . . 8 ⊢ (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
15 | 1, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
16 | 11, 15 | eqtr2d 2777 | . . . . . 6 ⊢ (𝜑 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) = 𝐷) |
17 | 16 | fveq2d 6846 | . . . . 5 ⊢ (𝜑 → (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) = (MetOpen‘𝐷)) |
18 | 10, 17 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘𝐷)) |
19 | 9, 18 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝑉 ∈ (MetOpen‘𝐷)) |
20 | qndenserrnopnlem.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
21 | eqid 2736 | . . . 4 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
22 | 21 | mopni2 23849 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ 𝑉 ∈ (MetOpen‘𝐷) ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) |
23 | 6, 19, 20, 22 | syl3anc 1371 | . 2 ⊢ (𝜑 → ∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) |
24 | 1 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝐼 ∈ Fin) |
25 | rrxtps 44517 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ Fin → (ℝ^‘𝐼) ∈ TopSp) | |
26 | 1, 25 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (ℝ^‘𝐼) ∈ TopSp) |
27 | eqid 2736 | . . . . . . . . . . . 12 ⊢ (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) | |
28 | 27, 8 | istps 22283 | . . . . . . . . . . 11 ⊢ ((ℝ^‘𝐼) ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼)))) |
29 | 26, 28 | sylib 217 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼)))) |
30 | 1, 12, 27 | rrxbasefi 24774 | . . . . . . . . . . 11 ⊢ (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼)) |
31 | 30 | fveq2d 6846 | . . . . . . . . . 10 ⊢ (𝜑 → (TopOn‘(Base‘(ℝ^‘𝐼))) = (TopOn‘(ℝ ↑m 𝐼))) |
32 | 29, 31 | eleqtrd 2840 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(ℝ ↑m 𝐼))) |
33 | toponss 22276 | . . . . . . . . 9 ⊢ ((𝐽 ∈ (TopOn‘(ℝ ↑m 𝐼)) ∧ 𝑉 ∈ 𝐽) → 𝑉 ⊆ (ℝ ↑m 𝐼)) | |
34 | 32, 7, 33 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ⊆ (ℝ ↑m 𝐼)) |
35 | 34, 20 | sseldd 3945 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (ℝ ↑m 𝐼)) |
36 | 35 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝑋 ∈ (ℝ ↑m 𝐼)) |
37 | simp2 1137 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝑒 ∈ ℝ+) | |
38 | 24, 36, 2, 37 | qndenserrnbl 44526 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝑒)) |
39 | ssel 3937 | . . . . . . . 8 ⊢ ((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦 ∈ 𝑉)) | |
40 | 39 | adantr 481 | . . . . . . 7 ⊢ (((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 ∧ 𝑦 ∈ (ℚ ↑m 𝐼)) → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦 ∈ 𝑉)) |
41 | 40 | 3ad2antl3 1187 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) ∧ 𝑦 ∈ (ℚ ↑m 𝐼)) → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦 ∈ 𝑉)) |
42 | 41 | reximdva 3165 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉)) |
43 | 38, 42 | mpd 15 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) |
44 | 43 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑒 ∈ ℝ+ → ((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉))) |
45 | 44 | rexlimdv 3150 | . 2 ⊢ (𝜑 → (∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉)) |
46 | 23, 45 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∃wrex 3073 ⊆ wss 3910 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 ↑m cmap 8765 Fincfn 8883 ℝcr 11050 − cmin 11385 2c2 12208 ℚcq 12873 ℝ+crp 12915 ↑cexp 13967 √csqrt 15118 Σcsu 15570 Basecbs 17083 distcds 17142 TopOpenctopn 17303 ∞Metcxmet 20781 Metcmet 20782 ballcbl 20783 MetOpencmopn 20786 TopOnctopon 22259 TopSpctps 22281 ℝ^crrx 24747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ico 13270 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-sum 15571 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-prds 17329 df-pws 17331 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-ghm 19006 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-cring 19967 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-dvr 20112 df-rnghom 20146 df-drng 20187 df-field 20188 df-subrg 20220 df-abv 20276 df-staf 20304 df-srng 20305 df-lmod 20324 df-lss 20393 df-lmhm 20483 df-lvec 20564 df-sra 20633 df-rgmod 20634 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-cnfld 20797 df-refld 21009 df-phl 21030 df-dsmm 21138 df-frlm 21153 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-xms 23673 df-ms 23674 df-nm 23938 df-ngp 23939 df-tng 23940 df-nrg 23941 df-nlm 23942 df-clm 24426 df-cph 24532 df-tcph 24533 df-rrx 24749 |
This theorem is referenced by: qndenserrnopn 44529 |
Copyright terms: Public domain | W3C validator |