| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qndenserrnopnlem | Structured version Visualization version GIF version | ||
| Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
| Ref | Expression |
|---|---|
| qndenserrnopnlem.i | ⊢ (𝜑 → 𝐼 ∈ Fin) |
| qndenserrnopnlem.j | ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) |
| qndenserrnopnlem.v | ⊢ (𝜑 → 𝑉 ∈ 𝐽) |
| qndenserrnopnlem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| qndenserrnopnlem.d | ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) |
| Ref | Expression |
|---|---|
| qndenserrnopnlem | ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qndenserrnopnlem.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ Fin) | |
| 2 | qndenserrnopnlem.d | . . . . . 6 ⊢ 𝐷 = (dist‘(ℝ^‘𝐼)) | |
| 3 | 2 | rrxmetfi 25362 | . . . . 5 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼))) |
| 5 | metxmet 24271 | . . . 4 ⊢ (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼))) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼))) |
| 7 | qndenserrnopnlem.v | . . . . 5 ⊢ (𝜑 → 𝑉 ∈ 𝐽) | |
| 8 | qndenserrnopnlem.j | . . . . 5 ⊢ 𝐽 = (TopOpen‘(ℝ^‘𝐼)) | |
| 9 | 7, 8 | eleqtrdi 2844 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ (TopOpen‘(ℝ^‘𝐼))) |
| 10 | 1 | rrxtopnfi 46264 | . . . . 5 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))))) |
| 11 | 2 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐷 = (dist‘(ℝ^‘𝐼))) |
| 12 | eqid 2735 | . . . . . . . . 9 ⊢ (ℝ^‘𝐼) = (ℝ^‘𝐼) | |
| 13 | eqid 2735 | . . . . . . . . 9 ⊢ (ℝ ↑m 𝐼) = (ℝ ↑m 𝐼) | |
| 14 | 12, 13 | rrxdsfi 25361 | . . . . . . . 8 ⊢ (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
| 15 | 1, 14 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) |
| 16 | 11, 15 | eqtr2d 2771 | . . . . . 6 ⊢ (𝜑 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2))) = 𝐷) |
| 17 | 16 | fveq2d 6879 | . . . . 5 ⊢ (𝜑 → (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘 ∈ 𝐼 (((𝑓‘𝑘) − (𝑔‘𝑘))↑2)))) = (MetOpen‘𝐷)) |
| 18 | 10, 17 | eqtrd 2770 | . . . 4 ⊢ (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘𝐷)) |
| 19 | 9, 18 | eleqtrd 2836 | . . 3 ⊢ (𝜑 → 𝑉 ∈ (MetOpen‘𝐷)) |
| 20 | qndenserrnopnlem.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 21 | eqid 2735 | . . . 4 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 22 | 21 | mopni2 24430 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ 𝑉 ∈ (MetOpen‘𝐷) ∧ 𝑋 ∈ 𝑉) → ∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) |
| 23 | 6, 19, 20, 22 | syl3anc 1373 | . 2 ⊢ (𝜑 → ∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) |
| 24 | 1 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝐼 ∈ Fin) |
| 25 | rrxtps 46263 | . . . . . . . . . . . 12 ⊢ (𝐼 ∈ Fin → (ℝ^‘𝐼) ∈ TopSp) | |
| 26 | 1, 25 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → (ℝ^‘𝐼) ∈ TopSp) |
| 27 | eqid 2735 | . . . . . . . . . . . 12 ⊢ (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼)) | |
| 28 | 27, 8 | istps 22870 | . . . . . . . . . . 11 ⊢ ((ℝ^‘𝐼) ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼)))) |
| 29 | 26, 28 | sylib 218 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼)))) |
| 30 | 1, 12, 27 | rrxbasefi 25360 | . . . . . . . . . . 11 ⊢ (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼)) |
| 31 | 30 | fveq2d 6879 | . . . . . . . . . 10 ⊢ (𝜑 → (TopOn‘(Base‘(ℝ^‘𝐼))) = (TopOn‘(ℝ ↑m 𝐼))) |
| 32 | 29, 31 | eleqtrd 2836 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘(ℝ ↑m 𝐼))) |
| 33 | toponss 22863 | . . . . . . . . 9 ⊢ ((𝐽 ∈ (TopOn‘(ℝ ↑m 𝐼)) ∧ 𝑉 ∈ 𝐽) → 𝑉 ⊆ (ℝ ↑m 𝐼)) | |
| 34 | 32, 7, 33 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → 𝑉 ⊆ (ℝ ↑m 𝐼)) |
| 35 | 34, 20 | sseldd 3959 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (ℝ ↑m 𝐼)) |
| 36 | 35 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝑋 ∈ (ℝ ↑m 𝐼)) |
| 37 | simp2 1137 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝑒 ∈ ℝ+) | |
| 38 | 24, 36, 2, 37 | qndenserrnbl 46272 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝑒)) |
| 39 | ssel 3952 | . . . . . . . 8 ⊢ ((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦 ∈ 𝑉)) | |
| 40 | 39 | adantr 480 | . . . . . . 7 ⊢ (((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 ∧ 𝑦 ∈ (ℚ ↑m 𝐼)) → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦 ∈ 𝑉)) |
| 41 | 40 | 3ad2antl3 1188 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) ∧ 𝑦 ∈ (ℚ ↑m 𝐼)) → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦 ∈ 𝑉)) |
| 42 | 41 | reximdva 3153 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉)) |
| 43 | 38, 42 | mpd 15 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) |
| 44 | 43 | 3exp 1119 | . . 3 ⊢ (𝜑 → (𝑒 ∈ ℝ+ → ((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉))) |
| 45 | 44 | rexlimdv 3139 | . 2 ⊢ (𝜑 → (∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉)) |
| 46 | 23, 45 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 ⊆ wss 3926 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 ↑m cmap 8838 Fincfn 8957 ℝcr 11126 − cmin 11464 2c2 12293 ℚcq 12962 ℝ+crp 13006 ↑cexp 14077 √csqrt 15250 Σcsu 15700 Basecbs 17226 distcds 17278 TopOpenctopn 17433 ∞Metcxmet 21298 Metcmet 21299 ballcbl 21300 MetOpencmopn 21303 TopOnctopon 22846 TopSpctps 22868 ℝ^crrx 25333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 ax-addf 11206 ax-mulf 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-tpos 8223 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-sup 9452 df-inf 9453 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-q 12963 df-rp 13007 df-xneg 13126 df-xadd 13127 df-xmul 13128 df-ioo 13364 df-ico 13366 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-sum 15701 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-hom 17293 df-cco 17294 df-rest 17434 df-topn 17435 df-0g 17453 df-gsum 17454 df-topgen 17455 df-prds 17459 df-pws 17461 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-ghm 19194 df-cntz 19298 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-cring 20194 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-dvr 20359 df-rhm 20430 df-subrng 20504 df-subrg 20528 df-drng 20689 df-field 20690 df-abv 20767 df-staf 20797 df-srng 20798 df-lmod 20817 df-lss 20887 df-lmhm 20978 df-lvec 21059 df-sra 21129 df-rgmod 21130 df-psmet 21305 df-xmet 21306 df-met 21307 df-bl 21308 df-mopn 21309 df-cnfld 21314 df-refld 21563 df-phl 21584 df-dsmm 21690 df-frlm 21705 df-top 22830 df-topon 22847 df-topsp 22869 df-bases 22882 df-xms 24257 df-ms 24258 df-nm 24519 df-ngp 24520 df-tng 24521 df-nrg 24522 df-nlm 24523 df-clm 25012 df-cph 25118 df-tcph 25119 df-rrx 25335 |
| This theorem is referenced by: qndenserrnopn 46275 |
| Copyright terms: Public domain | W3C validator |