Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qndenserrnopnlem Structured version   Visualization version   GIF version

Theorem qndenserrnopnlem 41445
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qndenserrnopnlem.i (𝜑𝐼 ∈ Fin)
qndenserrnopnlem.j 𝐽 = (TopOpen‘(ℝ^‘𝐼))
qndenserrnopnlem.v (𝜑𝑉𝐽)
qndenserrnopnlem.x (𝜑𝑋𝑉)
qndenserrnopnlem.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
qndenserrnopnlem (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉)
Distinct variable groups:   𝑦,𝐷   𝑦,𝐼   𝑦,𝑉   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝐽(𝑦)

Proof of Theorem qndenserrnopnlem
Dummy variables 𝑒 𝑓 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qndenserrnopnlem.i . . . . 5 (𝜑𝐼 ∈ Fin)
2 qndenserrnopnlem.d . . . . . 6 𝐷 = (dist‘(ℝ^‘𝐼))
32rrxmetfi 23618 . . . . 5 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)))
41, 3syl 17 . . . 4 (𝜑𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)))
5 metxmet 22547 . . . 4 (𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼)))
64, 5syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼)))
7 qndenserrnopnlem.v . . . . 5 (𝜑𝑉𝐽)
8 qndenserrnopnlem.j . . . . 5 𝐽 = (TopOpen‘(ℝ^‘𝐼))
97, 8syl6eleq 2869 . . . 4 (𝜑𝑉 ∈ (TopOpen‘(ℝ^‘𝐼)))
101rrxtopnfi 41435 . . . . 5 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
112a1i 11 . . . . . . 7 (𝜑𝐷 = (dist‘(ℝ^‘𝐼)))
12 eqid 2778 . . . . . . . . 9 (ℝ^‘𝐼) = (ℝ^‘𝐼)
13 eqid 2778 . . . . . . . . 9 (ℝ ↑𝑚 𝐼) = (ℝ ↑𝑚 𝐼)
1412, 13rrxdsfi 23617 . . . . . . . 8 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
151, 14syl 17 . . . . . . 7 (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
1611, 15eqtr2d 2815 . . . . . 6 (𝜑 → (𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷)
1716fveq2d 6450 . . . . 5 (𝜑 → (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))) = (MetOpen‘𝐷))
1810, 17eqtrd 2814 . . . 4 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘𝐷))
199, 18eleqtrd 2861 . . 3 (𝜑𝑉 ∈ (MetOpen‘𝐷))
20 qndenserrnopnlem.x . . 3 (𝜑𝑋𝑉)
21 eqid 2778 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2221mopni2 22706 . . 3 ((𝐷 ∈ (∞Met‘(ℝ ↑𝑚 𝐼)) ∧ 𝑉 ∈ (MetOpen‘𝐷) ∧ 𝑋𝑉) → ∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉)
236, 19, 20, 22syl3anc 1439 . 2 (𝜑 → ∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉)
2413ad2ant1 1124 . . . . . 6 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝐼 ∈ Fin)
25 rrxtps 41434 . . . . . . . . . . . 12 (𝐼 ∈ Fin → (ℝ^‘𝐼) ∈ TopSp)
261, 25syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ^‘𝐼) ∈ TopSp)
27 eqid 2778 . . . . . . . . . . . 12 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
2827, 8istps 21146 . . . . . . . . . . 11 ((ℝ^‘𝐼) ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼))))
2926, 28sylib 210 . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼))))
301, 12, 27rrxbasefi 23616 . . . . . . . . . . 11 (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑𝑚 𝐼))
3130fveq2d 6450 . . . . . . . . . 10 (𝜑 → (TopOn‘(Base‘(ℝ^‘𝐼))) = (TopOn‘(ℝ ↑𝑚 𝐼)))
3229, 31eleqtrd 2861 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(ℝ ↑𝑚 𝐼)))
33 toponss 21139 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘(ℝ ↑𝑚 𝐼)) ∧ 𝑉𝐽) → 𝑉 ⊆ (ℝ ↑𝑚 𝐼))
3432, 7, 33syl2anc 579 . . . . . . . 8 (𝜑𝑉 ⊆ (ℝ ↑𝑚 𝐼))
3534, 20sseldd 3822 . . . . . . 7 (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))
36353ad2ant1 1124 . . . . . 6 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝑋 ∈ (ℝ ↑𝑚 𝐼))
37 simp2 1128 . . . . . 6 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝑒 ∈ ℝ+)
3824, 36, 2, 37qndenserrnbl 41443 . . . . 5 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝑒))
39 ssel 3815 . . . . . . . 8 ((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦𝑉))
4039adantr 474 . . . . . . 7 (((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉𝑦 ∈ (ℚ ↑𝑚 𝐼)) → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦𝑉))
41403ad2antl3 1195 . . . . . 6 (((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) ∧ 𝑦 ∈ (ℚ ↑𝑚 𝐼)) → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦𝑉))
4241reximdva 3198 . . . . 5 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → (∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉))
4338, 42mpd 15 . . . 4 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉)
44433exp 1109 . . 3 (𝜑 → (𝑒 ∈ ℝ+ → ((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉)))
4544rexlimdv 3212 . 2 (𝜑 → (∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉))
4623, 45mpd 15 1 (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1601  wcel 2107  wrex 3091  wss 3792  cfv 6135  (class class class)co 6922  cmpt2 6924  𝑚 cmap 8140  Fincfn 8241  cr 10271  cmin 10606  2c2 11430  cq 12095  +crp 12137  cexp 13178  csqrt 14380  Σcsu 14824  Basecbs 16255  distcds 16347  TopOpenctopn 16468  ∞Metcxmet 20127  Metcmet 20128  ballcbl 20129  MetOpencmopn 20132  TopOnctopon 21122  TopSpctps 21144  ℝ^crrx 23589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-prds 16494  df-pws 16496  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-ghm 18042  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-dvr 19070  df-rnghom 19104  df-drng 19141  df-field 19142  df-subrg 19170  df-abv 19209  df-staf 19237  df-srng 19238  df-lmod 19257  df-lss 19325  df-lmhm 19417  df-lvec 19498  df-sra 19569  df-rgmod 19570  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-refld 20348  df-phl 20369  df-dsmm 20475  df-frlm 20490  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-xms 22533  df-ms 22534  df-nm 22795  df-ngp 22796  df-tng 22797  df-nrg 22798  df-nlm 22799  df-clm 23270  df-cph 23375  df-tcph 23376  df-rrx 23591
This theorem is referenced by:  qndenserrnopn  41446
  Copyright terms: Public domain W3C validator