Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qndenserrnopnlem Structured version   Visualization version   GIF version

Theorem qndenserrnopnlem 46253
Description: n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
qndenserrnopnlem.i (𝜑𝐼 ∈ Fin)
qndenserrnopnlem.j 𝐽 = (TopOpen‘(ℝ^‘𝐼))
qndenserrnopnlem.v (𝜑𝑉𝐽)
qndenserrnopnlem.x (𝜑𝑋𝑉)
qndenserrnopnlem.d 𝐷 = (dist‘(ℝ^‘𝐼))
Assertion
Ref Expression
qndenserrnopnlem (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦𝑉)
Distinct variable groups:   𝑦,𝐷   𝑦,𝐼   𝑦,𝑉   𝑦,𝑋   𝜑,𝑦
Allowed substitution hint:   𝐽(𝑦)

Proof of Theorem qndenserrnopnlem
Dummy variables 𝑒 𝑓 𝑔 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qndenserrnopnlem.i . . . . 5 (𝜑𝐼 ∈ Fin)
2 qndenserrnopnlem.d . . . . . 6 𝐷 = (dist‘(ℝ^‘𝐼))
32rrxmetfi 25460 . . . . 5 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
41, 3syl 17 . . . 4 (𝜑𝐷 ∈ (Met‘(ℝ ↑m 𝐼)))
5 metxmet 24360 . . . 4 (𝐷 ∈ (Met‘(ℝ ↑m 𝐼)) → 𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
64, 5syl 17 . . 3 (𝜑𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)))
7 qndenserrnopnlem.v . . . . 5 (𝜑𝑉𝐽)
8 qndenserrnopnlem.j . . . . 5 𝐽 = (TopOpen‘(ℝ^‘𝐼))
97, 8eleqtrdi 2849 . . . 4 (𝜑𝑉 ∈ (TopOpen‘(ℝ^‘𝐼)))
101rrxtopnfi 46243 . . . . 5 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))
112a1i 11 . . . . . . 7 (𝜑𝐷 = (dist‘(ℝ^‘𝐼)))
12 eqid 2735 . . . . . . . . 9 (ℝ^‘𝐼) = (ℝ^‘𝐼)
13 eqid 2735 . . . . . . . . 9 (ℝ ↑m 𝐼) = (ℝ ↑m 𝐼)
1412, 13rrxdsfi 25459 . . . . . . . 8 (𝐼 ∈ Fin → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
151, 14syl 17 . . . . . . 7 (𝜑 → (dist‘(ℝ^‘𝐼)) = (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))
1611, 15eqtr2d 2776 . . . . . 6 (𝜑 → (𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))) = 𝐷)
1716fveq2d 6911 . . . . 5 (𝜑 → (MetOpen‘(𝑓 ∈ (ℝ ↑m 𝐼), 𝑔 ∈ (ℝ ↑m 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))) = (MetOpen‘𝐷))
1810, 17eqtrd 2775 . . . 4 (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘𝐷))
199, 18eleqtrd 2841 . . 3 (𝜑𝑉 ∈ (MetOpen‘𝐷))
20 qndenserrnopnlem.x . . 3 (𝜑𝑋𝑉)
21 eqid 2735 . . . 4 (MetOpen‘𝐷) = (MetOpen‘𝐷)
2221mopni2 24522 . . 3 ((𝐷 ∈ (∞Met‘(ℝ ↑m 𝐼)) ∧ 𝑉 ∈ (MetOpen‘𝐷) ∧ 𝑋𝑉) → ∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉)
236, 19, 20, 22syl3anc 1370 . 2 (𝜑 → ∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉)
2413ad2ant1 1132 . . . . . 6 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝐼 ∈ Fin)
25 rrxtps 46242 . . . . . . . . . . . 12 (𝐼 ∈ Fin → (ℝ^‘𝐼) ∈ TopSp)
261, 25syl 17 . . . . . . . . . . 11 (𝜑 → (ℝ^‘𝐼) ∈ TopSp)
27 eqid 2735 . . . . . . . . . . . 12 (Base‘(ℝ^‘𝐼)) = (Base‘(ℝ^‘𝐼))
2827, 8istps 22956 . . . . . . . . . . 11 ((ℝ^‘𝐼) ∈ TopSp ↔ 𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼))))
2926, 28sylib 218 . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼))))
301, 12, 27rrxbasefi 25458 . . . . . . . . . . 11 (𝜑 → (Base‘(ℝ^‘𝐼)) = (ℝ ↑m 𝐼))
3130fveq2d 6911 . . . . . . . . . 10 (𝜑 → (TopOn‘(Base‘(ℝ^‘𝐼))) = (TopOn‘(ℝ ↑m 𝐼)))
3229, 31eleqtrd 2841 . . . . . . . . 9 (𝜑𝐽 ∈ (TopOn‘(ℝ ↑m 𝐼)))
33 toponss 22949 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘(ℝ ↑m 𝐼)) ∧ 𝑉𝐽) → 𝑉 ⊆ (ℝ ↑m 𝐼))
3432, 7, 33syl2anc 584 . . . . . . . 8 (𝜑𝑉 ⊆ (ℝ ↑m 𝐼))
3534, 20sseldd 3996 . . . . . . 7 (𝜑𝑋 ∈ (ℝ ↑m 𝐼))
36353ad2ant1 1132 . . . . . 6 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝑋 ∈ (ℝ ↑m 𝐼))
37 simp2 1136 . . . . . 6 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → 𝑒 ∈ ℝ+)
3824, 36, 2, 37qndenserrnbl 46251 . . . . 5 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝑒))
39 ssel 3989 . . . . . . . 8 ((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦𝑉))
4039adantr 480 . . . . . . 7 (((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉𝑦 ∈ (ℚ ↑m 𝐼)) → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦𝑉))
41403ad2antl3 1186 . . . . . 6 (((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) ∧ 𝑦 ∈ (ℚ ↑m 𝐼)) → (𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → 𝑦𝑉))
4241reximdva 3166 . . . . 5 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → (∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝑒) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦𝑉))
4338, 42mpd 15 . . . 4 ((𝜑𝑒 ∈ ℝ+ ∧ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉) → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦𝑉)
44433exp 1118 . . 3 (𝜑 → (𝑒 ∈ ℝ+ → ((𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦𝑉)))
4544rexlimdv 3151 . 2 (𝜑 → (∃𝑒 ∈ ℝ+ (𝑋(ball‘𝐷)𝑒) ⊆ 𝑉 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦𝑉))
4623, 45mpd 15 1 (𝜑 → ∃𝑦 ∈ (ℚ ↑m 𝐼)𝑦𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1537  wcel 2106  wrex 3068  wss 3963  cfv 6563  (class class class)co 7431  cmpo 7433  m cmap 8865  Fincfn 8984  cr 11152  cmin 11490  2c2 12319  cq 12988  +crp 13032  cexp 14099  csqrt 15269  Σcsu 15719  Basecbs 17245  distcds 17307  TopOpenctopn 17468  ∞Metcxmet 21367  Metcmet 21368  ballcbl 21369  MetOpencmopn 21372  TopOnctopon 22932  TopSpctps 22954  ℝ^crrx 25431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ico 13390  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-drng 20748  df-field 20749  df-abv 20827  df-staf 20857  df-srng 20858  df-lmod 20877  df-lss 20948  df-lmhm 21039  df-lvec 21120  df-sra 21190  df-rgmod 21191  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-cnfld 21383  df-refld 21641  df-phl 21662  df-dsmm 21770  df-frlm 21785  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-xms 24346  df-ms 24347  df-nm 24611  df-ngp 24612  df-tng 24613  df-nrg 24614  df-nlm 24615  df-clm 25110  df-cph 25216  df-tcph 25217  df-rrx 25433
This theorem is referenced by:  qndenserrnopn  46254
  Copyright terms: Public domain W3C validator