| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2t0e0 | Structured version Visualization version GIF version | ||
| Description: 2 times 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| 2t0e0 | ⊢ (2 · 0) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12200 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | 1 | mul01i 11303 | 1 ⊢ (2 · 0) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 0cc0 11006 · cmul 11011 2c2 12180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-2 12188 |
| This theorem is referenced by: expmulnbnd 14142 iseraltlem2 15590 fsumcube 15967 2mulprm 16604 1259lem5 17046 smndex2dnrinv 18823 ablsimpgfindlem1 20021 htpycc 24906 pco0 24941 pcohtpylem 24946 pcopt2 24950 pcoass 24951 pcorevlem 24953 pilem2 26389 cospi 26408 sin2pi 26411 pythag 26754 bclbnd 27218 bposlem1 27222 bposlem2 27223 lgsquadlem1 27318 lgsquadlem2 27319 log2sumbnd 27482 pntrlog2bndlem4 27518 finsumvtxdg2size 29529 cdj3lem1 32414 wrdt2ind 32934 420lcm8e840 42114 dirkertrigeqlem3 46208 fourierdlem62 46276 2exp340mod341 47843 1odd 48281 ackval2012 48802 2itscp 48892 |
| Copyright terms: Public domain | W3C validator |