MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2t0e0 Structured version   Visualization version   GIF version

Theorem 2t0e0 12142
Description: 2 times 0 equals 0. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
2t0e0 (2 · 0) = 0

Proof of Theorem 2t0e0
StepHypRef Expression
1 2cn 12048 . 2 2 ∈ ℂ
21mul01i 11165 1 (2 · 0) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  (class class class)co 7275  0cc0 10871   · cmul 10876  2c2 12028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-2 12036
This theorem is referenced by:  expmulnbnd  13950  iseraltlem2  15394  fsumcube  15770  2mulprm  16398  1259lem5  16836  smndex2dnrinv  18554  ablsimpgfindlem1  19710  htpycc  24143  pco0  24177  pcohtpylem  24182  pcopt2  24186  pcoass  24187  pcorevlem  24189  pilem2  25611  cospi  25629  sin2pi  25632  pythag  25967  bclbnd  26428  bposlem1  26432  bposlem2  26433  lgsquadlem1  26528  lgsquadlem2  26529  log2sumbnd  26692  pntrlog2bndlem4  26728  finsumvtxdg2size  27917  cdj3lem1  30796  wrdt2ind  31225  420lcm8e840  40019  dirkertrigeqlem3  43641  fourierdlem62  43709  2exp340mod341  45185  1odd  45365  ackval2012  46037  2itscp  46127
  Copyright terms: Public domain W3C validator