MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4t3e12 Structured version   Visualization version   GIF version

Theorem 4t3e12 12692
Description: 4 times 3 equals 12. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
4t3e12 (4 · 3) = 12

Proof of Theorem 4t3e12
StepHypRef Expression
1 4nn0 12407 . 2 4 ∈ ℕ0
2 2nn0 12405 . 2 2 ∈ ℕ0
3 df-3 12196 . 2 3 = (2 + 1)
4 4t2e8 12295 . 2 (4 · 2) = 8
5 8p4e12 12676 . 2 (8 + 4) = 12
61, 2, 3, 4, 54t3lem 12691 1 (4 · 3) = 12
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  (class class class)co 7352  1c1 11014   · cmul 11018  2c2 12187  3c3 12188  4c4 12189  8c8 12193  cdc 12594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-dec 12595
This theorem is referenced by:  4t4e16  12693  13prm  17029  43prm  17035  139prm  17037  163prm  17038  317prm  17039  631prm  17040  1259lem4  17047  1259prm  17049  2503lem1  17050  2503lem2  17051  4001lem2  17055  4001lem4  17057  quartlem1  26795  cos9thpiminplylem1  33816  hgt750lem2  34686  fmtno4prmfac  47696  fmtno4prmfac193  47697  2exp340mod341  47857
  Copyright terms: Public domain W3C validator