![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cu2 | Structured version Visualization version GIF version |
Description: The cube of 2 is 8. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
cu2 | ⊢ (2↑3) = 8 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 11281 | . . 3 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 6803 | . 2 ⊢ (2↑3) = (2↑(2 + 1)) |
3 | 2cn 11292 | . . . 4 ⊢ 2 ∈ ℂ | |
4 | 2nn0 11510 | . . . 4 ⊢ 2 ∈ ℕ0 | |
5 | expp1 13073 | . . . 4 ⊢ ((2 ∈ ℂ ∧ 2 ∈ ℕ0) → (2↑(2 + 1)) = ((2↑2) · 2)) | |
6 | 3, 4, 5 | mp2an 664 | . . 3 ⊢ (2↑(2 + 1)) = ((2↑2) · 2) |
7 | sq2 13166 | . . . . 5 ⊢ (2↑2) = 4 | |
8 | 7 | oveq1i 6802 | . . . 4 ⊢ ((2↑2) · 2) = (4 · 2) |
9 | 4t2e8 11382 | . . . 4 ⊢ (4 · 2) = 8 | |
10 | 8, 9 | eqtri 2793 | . . 3 ⊢ ((2↑2) · 2) = 8 |
11 | 6, 10 | eqtri 2793 | . 2 ⊢ (2↑(2 + 1)) = 8 |
12 | 2, 11 | eqtri 2793 | 1 ⊢ (2↑3) = 8 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 (class class class)co 6792 ℂcc 10135 1c1 10138 + caddc 10140 · cmul 10142 2c2 11271 3c3 11272 4c4 11273 8c8 11277 ℕ0cn0 11493 ↑cexp 13066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-n0 11494 df-z 11579 df-uz 11888 df-seq 13008 df-exp 13067 |
This theorem is referenced by: ef01bndlem 15119 2exp6 16001 2503lem2 16051 quartlem1 24804 chtub 25157 bposlem8 25236 lhe4.4ex1a 39050 fmtno3 41987 fmtnoprmfac2lem1 42002 fmtno4sqrt 42007 m3prm 42030 2exp5 42031 2exp11 42041 5tcu2e40 42056 41prothprm 42060 |
Copyright terms: Public domain | W3C validator |