Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1lt5 | Structured version Visualization version GIF version |
Description: 1 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
1lt5 | ⊢ 1 < 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt4 12228 | . 2 ⊢ 1 < 4 | |
2 | 4lt5 12229 | . 2 ⊢ 4 < 5 | |
3 | 1re 11054 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 4re 12136 | . . 3 ⊢ 4 ∈ ℝ | |
5 | 5re 12139 | . . 3 ⊢ 5 ∈ ℝ | |
6 | 3, 4, 5 | lttri 11180 | . 2 ⊢ ((1 < 4 ∧ 4 < 5) → 1 < 5) |
7 | 1, 2, 6 | mp2an 689 | 1 ⊢ 1 < 5 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5086 1c1 10951 < clt 11088 4c4 12109 5c5 12110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-po 5520 df-so 5521 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-2 12115 df-3 12116 df-4 12117 df-5 12118 |
This theorem is referenced by: dec5nprm 16841 dec2nprm 16842 5prm 16884 10nprm 16889 prmlem2 16895 631prm 16902 scandxnbasendx 17100 slotsdifocndx 17202 srabaseOLD 20522 zlmbasOLD 20801 ppiub 26432 2lgslem3 26632 resvbasOLD 31667 fmtno4prmfac193 45295 31prm 45319 prstcocvalOLD 46623 |
Copyright terms: Public domain | W3C validator |