MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3lt5 Structured version   Visualization version   GIF version

Theorem 3lt5 12392
Description: 3 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
3lt5 3 < 5

Proof of Theorem 3lt5
StepHypRef Expression
1 3lt4 12388 . 2 3 < 4
2 4lt5 12391 . 2 4 < 5
3 3re 12294 . . 3 3 ∈ ℝ
4 4re 12298 . . 3 4 ∈ ℝ
5 5re 12301 . . 3 5 ∈ ℝ
63, 4, 5lttri 11342 . 2 ((3 < 4 ∧ 4 < 5) → 3 < 5)
71, 2, 6mp2an 690 1 3 < 5
Colors of variables: wff setvar class
Syntax hints:   class class class wbr 5148   < clt 11250  3c3 12270  4c4 12271  5c5 12272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-2 12277  df-3 12278  df-4 12279  df-5 12280
This theorem is referenced by:  23prm  17054  43prm  17057  83prm  17058  163prm  17060  scandxnmulrndx  17265  ipsstr  17283  sramulrOLD  20803  zlmmulrOLD  21079  psrvalstr  21475  matscaOLD  21923  bpos1  26793  bposlem3  26796  cyc3conja  32357  resvmulrOLD  32495  algstr  42007  mnringscadOLD  43070  31prm  46350  sbgoldbo  46540
  Copyright terms: Public domain W3C validator