Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3lt5 | Structured version Visualization version GIF version |
Description: 3 is less than 5. (Contributed by Mario Carneiro, 15-Sep-2013.) |
Ref | Expression |
---|---|
3lt5 | ⊢ 3 < 5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3lt4 11838 | . 2 ⊢ 3 < 4 | |
2 | 4lt5 11841 | . 2 ⊢ 4 < 5 | |
3 | 3re 11744 | . . 3 ⊢ 3 ∈ ℝ | |
4 | 4re 11748 | . . 3 ⊢ 4 ∈ ℝ | |
5 | 5re 11751 | . . 3 ⊢ 5 ∈ ℝ | |
6 | 3, 4, 5 | lttri 10794 | . 2 ⊢ ((3 < 4 ∧ 4 < 5) → 3 < 5) |
7 | 1, 2, 6 | mp2an 692 | 1 ⊢ 3 < 5 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5030 < clt 10703 3c3 11720 4c4 11721 5c5 11722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-op 4527 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5428 df-po 5441 df-so 5442 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-er 8297 df-en 8526 df-dom 8527 df-sdom 8528 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-2 11727 df-3 11728 df-4 11729 df-5 11730 |
This theorem is referenced by: 23prm 16500 43prm 16503 83prm 16504 163prm 16506 ipsstr 16691 sramulr 20010 zlmmulr 20279 psrvalstr 20668 matsca 21105 bpos1 25956 bposlem3 25959 cyc3conja 30940 resvmulr 31050 algstr 40484 mnringscad 41295 31prm 44472 sbgoldbo 44662 |
Copyright terms: Public domain | W3C validator |